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The aim of this paper is to prove the following result. Let G be a finite graph. Define GG, to be the graph
whose vertex set is the set of ordered pairs (v, k), v € V(G), 1 < k < n and where there is an edge from (v, k)
to (w,1) iff either v is adjacent to w in G and k =l or v = w and |k—1| = 1. We refer to the first kind of edge as
a vertical edge and the second as a horizontal edge. Let P, @ be subsets of V(G) and let R(G,n, P, Q) be the
graph formed by removing {(v,1),v € P} and {(w,n),w € Q} from G,,. This is a special case of the results
in Propp’s paper “A Reciprocity Theorem for Domino Tilings”, http://www.math.wisc.edu/ propp/recip.ps,
but do not seem to be easily derivable using the graphical methods of that paper.

Let F(G,n, P,Q)(x) be the generating function in which the coeficent of z* is the number of perfect matchings
of R(G,n, P,Q) with k vertical edges. For fixed G, P and @, F(G,n, P,Q)(x) will be shown to obey a linear
recurrence (with coefficents in Q[z]). This allows us to define F(G,n, P,Q)(z) for n negative. Let P and Q
denote the complements of P and (). Then our central claim is

F(G7 n, P7 Q)(Cﬂ) = F(Gﬂ —TL,?,Q)(_IE)
Moreover, the F' are always either even or odd polynomials, so

F(G,n,P,Q)(z) = +F(G,-n, P,Q)(z)
where the + is given by the following table

n=0(mod2), p-—¢=0(mod4): +
n=0(mod2), p-¢g=2(mod4): -
n = 1( mod 2), g— p—qg=0(mod4): +
n=1(mod?2), g—p—qg=2(mod4): —

with g = V(|G]), p = |P|, ¢ = |Q|- The cases not appearing in the table are those that have an odd number
of vertices and thus can not be tiled.

To make this statement perfectly true, we need to define the boundary cases correctly. F(G,1,P,Q)(x) is
the generating function for perfect matchings of G\ (P U Q) if PN Q = § and 0 otherwise. F(G,0, P, Q) is
1if P =@ and 0 otherwise.

Claim 1: Let M be an invertible A by h matrix and fix i, j. Let x, be the sequenece whose nth term is
(M")(ij). The x,’s obey a linear recurrence. Moreover, if we use any linear recurrence obeyed by z, to
extend x, to n negtaive, then X ,, = (M™");).

Proof: Let the characteristic polynomial of M be M"* —a,_1M" ' —...—ay. Then M"t" = q)_ M+h—1 4

..+ aoM"™ and we get Tp1p = Qp—1Tpyh—1 + ...+ apTy. Thus, the a, obey a linear recurrence and this
recurrence clearly continues to work for n negative. Now suppose the z,, obey some other recurrence, we
must show that this recurrence gives the same extension to n negative. So suppose z,, z}, both obey some
linear recurrence (not necesarily the same one) and z, = z], for n > 0. It is well known that a seqeunce
obeys a linear reccurence relation iff it is a sum of terms of the form n*a™. As the difference of such functions
is another such function, we get that d,, = x, — 2!, also obeys some hnear recurrence, say Zi:o a;dp+; =0
with ag # 0. Then it follows by induction on n that d_,, = 0 so z,, = z/,.

Let V be the vector space of dimension 2!V(%)| where we label the basis vector by subsets of V(G). We
will find a map M : V — V such that F(G,n,P,Q)(z) = (M™)pg to which we can apply Claim 1. Define
S :V — V to be the permutation matrix taking P to P. For each edge (u,v) of G, define D (y,v)(z) to be
the map that takes P to P\ {u,v} if u,v € P, 0 otherwise.

Claim 2: The Dy, ,) commute and D o) = =0.

Proof: Consider two edges (u,v), (u',v") and some subset P of G. We want to understand Dy ) Dy o) P.
If u, v, v and v' are all distinct and w,v,u’,v" € P then this is P\ {u,v,u’,v'}. If not, the result is 0. As



this description is symmetric in interchanging (u,v) with (u',v"), the matrices commute. If (u,v) = (u/,v")
then clearly the vertices are not distinct, so we always get 0.

Claim 3:

n

F(G,n,P,Q)(z) = (( II (1+:rD(W,))>S>

(u,v)€G PQ

Proof: We will abreviate A = H(u,u)ec(l +xD(,,)) and M = AS. Our proof is by induction on n. The
result is clear for n = 0. For those to whom it is not clear that the n = 0 definition is compatible with
induction, we also check n = 1. If PN Q # 0, then there is a point in P not in Q. But S(Q) = @ and every
graph occuring in AQ is obtained from @ by deleting vertices, so P does not occur in M (Q). If, on the other
hand, PN Q = 0§, then F(G, 1, P,Q)(x) counts the tilings of G\ (PUQ) = Q \ P. This is the same as the
number of ways to remove edges from @ and leave P, which is exactly what the coefficent of P in AQ is.

Now for the inductive step. For any perfect matching of R(G,n,P,Q), let P’ C P be the set of v € G
such that (v, 1) is covered by a horizontal edge. The generating fnuctin for matchings for a partiucalr P’ is
the number of ways to obtain P’ from P by deleting edges of G, times z raised to the number of deleted
edges, times F(G,n — 1, P', Q). (The P’ occurs because the points (v,2), v € P' are already covered by the
horizontal edges from (v, 1) so we are left with a R(G,n — 1, P', Q) to match.) So

_ number of ways to delete number of edges removed 1 p
F(G,n, P,Q)(z) = ; (disjoint edges from P and get P') v F(Gn=1, P, Q)(x).

This is exactly the recurrence from taking powers of M.

So, combining Claims 1 and 2, we know that
F(G,—n,P,Q)(-2) = (M(=2) ")pg = (SM(-2)"S™")pg = (SM(-2)"'S™ ") g
We want to show this is the same as (M (z)™)pg. It obviously suffices to show
M(z) = SM(—z) 'S

This is the same as
A(z)S = S(A(—:n)S)_lS_1 = A(—:n)_lS_1

Noting the obvious fact that S = S~!, we are reduced to showing that A(z)~' = A(—z). As the Dy,
copmmute, it suffices to show (1 + :I:D(W,))*1 =1 —2D(y,). This is easy, (1 + 2D (y,))(1 = 2D(yw)) =
1—22D? ») = 1 as we showed D? ) =0.

(w, (u,v

We have now proved the first form of the recirocity relationship. We still need to show the F(G,n, P, Q)(z)
are always either even or odd and have the sign claimed by the table at the beginning of the paper. It is
equivalent to show that the parity of the number of vertical edges in any tiling of R(G,n, P, Q) is independent
of the choice of matching. We will set g, p, ¢ to be the sizes of G, P and @ respectively. The total number
of edges, horizontal and vertical, used in any matching (ng —p — q)/2.

For every horizontal edge ((v, k), (v, k+ 1)), exactly one of k and k+ 1 are even, so the number of horizontal
edges is the same as the number of (v,l) with [ even that occur as an endpoint of a horizontal edge. For
any given [, the number of (v,!) which are endpoints of vertical edges is even, so the parity of the number
of hroizontal edges with endpoints of that form is simply the number of total points of the form (v,l). This
isg—pifl=1,g—qifl =n and g otherwise. So the parity of the number of horizontal edges is that of
((n—1)/2)g if n is odd and of ng/2 — ¢ if n is even. So the parity of the number of vertical edges is

(ng—p—q)/2—(n—-1)g/2=(9—-p—-q)/2 n=1(mod2)
(ng—p—q)/2—(ng/2—q) = (q—p)/2 n = (0 mod 2)

This matches the table above, and our proof is complete.



