Homework #2. To be handed in on Monday, October 3.

1. Let u be a locally bounded function on a set $E \subset \mathbb{R}^n$ that takes values in $[-\infty, +\infty)$. The upper semicontinuous regularization of u is the function u^* defined by

$$u^*(x) = \lim_{y \to x, y \in E} u(y).$$

Prove that u^* is uppersemincontinuous on E.

2. Recall that a set $\Omega \subset \mathbb{R}^n$ is convex if the line segment from x to $y, [x,y] := \{(1-t)x + ty : 0 \le t \le 1\} \subset \Omega \text{ whenever } x,y \in \Omega.$ A function φ is said to be convex on Ω if and only if its graph lies below any chord; i.e.

$$\varphi((1-t)x + ty) \le (1-t)\varphi(x) + t\varphi(y)$$

for $x, y \in \Omega$ and $0 \le t \le 1$.

- (a). Prove that a convex function φ on an open convex set Ω is Lipshitz continuous of order 1 on each compact subset of Ω ; that is, for each compact set $K \subset \Omega$, there is a constant M such that $|\varphi(x) - \varphi(y)| < \infty$ M|x-y| for all $x,y \in K$. Hint: Look first at the one variable case and find an explicit bound for the difference quotients of φ .
- (b) Prove that a C^2 function φ on an open set is convex in a neighborhood of each point of the set if and only if the Hessian of φ , $\left[\frac{\partial^2 \varphi}{\partial x_i \partial x_k}\right]$, is a positive (semi)definite matrix. That is, for all $\lambda \in \mathbb{R}^n$ and $x \in \Omega$,

$$\sum_{j,k=1}^{n} \lambda_j \lambda_k \frac{\partial^2 \varphi(x)}{\partial x_j \partial x_k} \ge 0.$$

3. (a) Show that a function u that is independent of Im z is plurisubharmonic if and only if it is a convex function of Re z that is nondecreasing in each variable. In case u is smooth, what is the relationship between the real Hessian of the convex function and the complex Hes-

sian
$$\left[\frac{\partial^2 u}{\partial z_i \partial \overline{z}_k}\right]$$
 of u ?

(b) Show that a function u that is a function of $(|z_1|, \ldots, |z_n|)$ is plurisubharmonic if and only if it is a convex function of $(\log |z_1|, \ldots, \log |z_n|)$ that is increasing in each variable separately. That is, there is a convex function φ that is nondecreasing in each variable and satisfies

- $u(z) = \varphi(\log |z_1|, \dots, \log |z_n|)$. In case u is smooth, give the relationship between the complex Hessian of u and that of φ in the smooth case.
- **4.** Let $p_{\nu}(z)$ be a sequence of homogeneous polynomials in $z=(z_1,\ldots,z_n)$ with p_{ν} of degree ν , $\nu=0,1,2,\ldots$. Suppose also that: such thate a formal power series of . Suppose that:
- (a) the power series $\sum_{\nu=0}^{\infty} p_{\nu}(z)$ converges absolutely to an analytic function f(z) on a neighborhood of the origin; and
- (b) For each fixed $z \neq 0$, the function of one complex variable, $\zeta \rightarrow f(\zeta z)$, which is analytic for ζ near the origin actually is an entire function. i.e. has an analytic continuation to all of \mathbb{C} .

Prove that the formal power series actually converges absolutely and uniformly on compact subsets of \mathbb{C}^n to an entire function.

Hint: The homogeneous polynomials satisfy an estimate of the form $|p_{\nu}(z)| \leq C_{\nu}|z|^{\nu}$. What do the hypotheses and conclusion tell us about the size of the constants C_{ν} ?