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Electrical networks

An electrical resistor network is an undirected weighted graph Γ.
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Edge weight = conductance = 1/resistance
Some vertices are designated as boundary vertices. The rest are
interior vertices.



Response matrix

The electrical properties are described by the response matrix

Λ(Γ) : R#boundary vertices −→ R#boundary vertices

voltage vector 7−→ current vector

which gives the current that flows through the boundary vertices
when specified voltages are applied.

Λij = current flowing through vertex j when

the voltage is set to 1 at vertex i and 0 at all other vertices.

Possibly surprisingly, Λ(Γ) is a symmetric matrix.
If all vertices are considered boundary vertices, then Λ(Γ) is simply
the Laplacian matrix of Γ.



Response matrix

The electrical properties are described by the response matrix

Λ(Γ) : R#boundary vertices −→ R#boundary vertices

voltage vector 7−→ current vector

which gives the current that flows through the boundary vertices
when specified voltages are applied.

Λij = current flowing through vertex j when

the voltage is set to 1 at vertex i and 0 at all other vertices.

Possibly surprisingly, Λ(Γ) is a symmetric matrix.
If all vertices are considered boundary vertices, then Λ(Γ) is simply
the Laplacian matrix of Γ.



Axioms of electricity

The matrix Λ(Γ) can be computed using only two axioms.

Kirchhoff’s Law (1845)

The sum of currents flowing into an interior vertex is equal to 0.

Ohm’s Law (1827)

For each resistor we have

(V1 − V2) = I × R

where
I = current flowing through the resistor
V1,V2 = voltages at the two ends of resistor
R = resistance of the resistor

To compute Λ(Γ), we give variables to each edge (current through
that edge) and each vertex (voltage at that vertex). Then solve a
large system of linear equations.
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Some basic problems

Inverse problem

Can we recover Γ from Λ(Γ)?

Applications of this to e.g. electrical impedance tomography
(medical imaging technique).

Detection problem

Given a matrix M, how can we tell if M = Λ(Γ) for some Γ?

Equivalence problem

When do two networks Γ and Γ′ satisfy Λ(Γ) = Λ(Γ′)?
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Electrically equivalent networks

Series-parallel transformations:
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b
ab

a + b
a b a + b

Degenerate reductions:

a
a



Y −∆, or star-triangle transformation (Kennelly 1899)

a

b

c

Γ

A

B

C

Γ′
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a + b + c
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, c =
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C
.



Planar electrical networks
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Planar electrical networks

Theorem (Curtis-Ingerman-Morrow and
Colin de Verdière-Gitler-Vertigan)

Consider planar electrical networks with n boundary vertices.

1 Any two planar electrical networks Γ, Γ′ such that
Λ(Γ) = Λ(Γ′) are related by local electrical equivalences.

2 The space of response matrices consists of symmetric n × n
matrices, with row sums equal to 0, and such that certain
“circular minors” are nonnegative.



Groves (Carroll-Speyer and Kenyon-Wilson)

A grove F in Γ is a subforest such that every interior vertex is
connected to some boundary vertex.
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Boundary partitions

The boundary partition σ(F ) of a grove F is the noncrossing
partition whose parts are boundary vertices belonging to the same
component of F .
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σ(F ) = (2, 3, 4 | 1, 5)

Planarity =⇒ noncrossing.



Noncrossing partitions
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The noncrossing partition σ = (1, 2, 5, 9 | 3, 4 | 6, 7, 8 | 10, 11 | 12).



Noncrossing partitions

Theorem

The number of noncrossing partitions on [n] is equal to the
Catalan number

Cn =
1

n + 1

(
2n

n

)
.

For n = 3, we have 5 noncrossing partitions.

(123), (1|23), (12|3), (13|2), (1|2|3).



Grove measurements

Let NCn denote the set of noncrossing partitions on {1, . . . , n}.

Grove generating function

For σ ∈ NCn, and an electrical network Γ, define

Lσ(Γ) =
∑

σ(F )=σ

wt(F )

where the weight of a grove F is the product of the weights of the
edges belonging to F .

We collect all the Lσ’s together to obtain a map

Γ 7−→ L(Γ) = (Lσ(Γ))σ∈NCn ∈ PNCn .
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Example
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Γ

L1|2|3 = a + b + c ,

L12|3 = ab,

L1|23 = bc,

L13|2 = ac,

L123 = abc

L(Γ) = (a + b + c : ab : bc : ac : abc) ∈ P4



Capturing electrical equivalence

Two networks are electrically equivalent if they have the same
response matrix.

Theorem

Γ and Γ′ are electrically equivalent if and only if L(Γ) = L(Γ′).

Counting forests captures electrical properties.

If part follows from the formula essentially due to Kirchhoff:

Λij =
L(i ,j |singletons)
L(all singletons)
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Matrix-tree theorem

A much more famous formula of Kirchhoff (no planarity is needed):

Theorem

We have

d̃et(Λ) =
L(all connected)
L(all singletons)

where d̃et denotes the reduced determinant: remove one row and
one column before taking the determinant.

The generating function L(all connected) counts spanning trees of Γ.

Kenyon and Wilson give (alternating) formulae for all minors of Λ.
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Invariance under electrical equivalences

Kirchhoff’s formula allows one to recover Λ(Γ) (response matrix)
from L(Γ) (grove counts).

To show that L(Γ) depends only on Λ(Γ), one checks that
L(Γ) ∈ PNCn is invariant under series-parallel transformations,
degenerate reductions, and star-triangle transformations.



Y −∆-transformation
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(
L(Γ)
L(Γ′)

)
=

(
a + b + c ab bc ac abc

1 C A B AB + BC + AB

)
The same point in P4 under

A =
bc

a + b + c
, B =

ac

a + b + c
, C =

ab

a + b + c
.



Compactification

Let us use nonnegative edge weights. The image of the map
Γ 7→ L(Γ) is not compact. We let

En = {L(Γ) | Γ planar electrical network } ⊂ PNCn

denote the closure of the image, called the

compactified space of planar electrical networks.

The topology on this space corresponds to continuously varying
conductances. When a conductance goes to 0 or ∞, we change
the combinatorics.



Cactus networks

Roughly speaking, a point L ∈ En is represented by an electrical
network where some of the boundary points have been glued
together (or “shorted”), in a planar way.
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(Conductances are not shown.)



Electroids

The electroid E(Γ) of Γ ∈ En is the set

E(Γ) = {σ | Lσ(Γ) 6= 0} ⊂ NCn.

These are noncrossing partitions for which there exist groves
inducing such a partition.
This is an invariant of a planar graph.
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E = {(1|2|3|4), (12|3|4), (23|1|4), (34|1|2), (14|23), (12|34),

(14|23), (123|4), (234|1), (134|2), (124|3), (1234)}
missing: (13|2|4) and (24|1|3)



Electroid stratification

Question

What are all possible electroids? How many electroids are there?

We have the electroid stratification

En =
⊔
E
EE .

This stratification is analogous to the matroid stratification of a
Grassmannian. More precisely, it is an analogue of the positroid
(positive matroid) stratification.

Noncrossing partitions ↔ Bases of matroids



Uncrossing poset for matchings

The set Pn of matchings on {1, 2, . . . , 2n} is a graded poset with
rank function c(τ) = number of crossings. (Studied by
Alman-Lian-Tran, Kenyon, Huang-Wen-Zie, Kim-Lee, L., ...)

or

|Pn| = (2n − 1).(2n − 3). . . . .5.3.1 |P3| = 15



Noncrossing partitions to noncrossing matchings

Bijection:
σ ∈ NCn 7−→ τ(σ) ∈ Pn
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σ = (146|23|5)

τ(σ) = {(1, 12), (2, 7), (3, 6), (4, 5), (8, 11), (9, 10)}
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Matchings classify electroid strata

Theorem (L.)

There is a bijection τ ↔ E(τ) between matchings and electroids,
given by

E(τ) = {σ|τ(σ) ≤ τ} ⊆ NCn.

|E(τ)| = 4
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Matchings are in bijection with electroids

Recall that we defined a stratification

En =
⊔
E
EE

Theorem (L.)

Label EE(τ) by Eτ .

1 For any τ ∈ Pn, we have Eτ ' Rc(τ)
>0

2 For any τ ∈ Pn, we have Eτ =
⊔
τ ′≤τ Eτ ′ .



Medial graph
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Electrical network −→ Medial graph −→ Matching on [2n]
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Some open problems

Question

Let Ẽn be the Zariski closure of En in PNCn(C). What are the
dimensions of Γ(Ẽn,O(d))?

For d = 1, it is the Catalan number Cn.

Question

Is En homeomorphic to a ball? Is Pn shellable?

We know Pn is graded and Eulerian, and we know En is
contractible.



Some open problems

Problem

Generalize the theory to electrical networks embedded on a surface.

Some work has been done on the cylinder and torus.

Question

What is the analogue of the matroid axioms for electroids?

Noncrossing partitions←→ Bases

Partial noncrossing partitions←→ Independent sets, circuits

...



Thank you!


