On the topology of totally positive spaces

Thomas Lam, University of Michigan joint work with Pavel Galashin and Steven Karp (thanks for slides!)

October 20th, 2018 Ann Arbor

Definition

• A matrix is *totally positive* (resp. totally nonnegative) if every submatrix has a positive (resp. nonnegative) determinant.

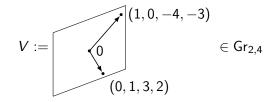
Definition

• A matrix is *totally positive* (resp. totally nonnegative) if every submatrix has a positive (resp. nonnegative) determinant.

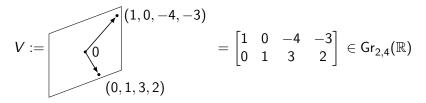
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix}$$

• The Grassmannian $\operatorname{Gr}_{k,n}(\mathbb{R})$ is the set of k-dimensional subspaces of \mathbb{R}^n .

• The *Grassmannian* $Gr_{k,n}(\mathbb{R})$ is the set of *k*-dimensional subspaces of \mathbb{R}^n .



• The *Grassmannian* $Gr_{k,n}(\mathbb{R})$ is the set of *k*-dimensional subspaces of \mathbb{R}^n .



The Grassmannian $\operatorname{Gr}_{k,n}(\mathbb{R})$

• The *Grassmannian* $Gr_{k,n}(\mathbb{R})$ is the set of *k*-dimensional subspaces of \mathbb{R}^n .

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathsf{Gr}_{2,4}(\mathbb{R})$$
$$= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

• The *Grassmannian* $Gr_{k,n}(\mathbb{R})$ is the set of *k*-dimensional subspaces of \mathbb{R}^n .

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}(\mathbb{R})$$

• Given $V \in Gr_{k,n}(\mathbb{R})$ in the form of a $k \times n$ matrix, for k-subsets I of $\{1, \dots, n\}$ let $\Delta_I(V)$ be the $k \times k$ minor of V in columns I. The *Plücker* coordinates $\Delta_I(V)$ are well defined up to a common nonzero scalar.

• The Grassmannian $\operatorname{Gr}_{k,n}(\mathbb{R})$ is the set of k-dimensional subspaces of \mathbb{R}^n .

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}(\mathbb{R})$$

$$\Delta_{\{1,2\}} = 1, \, \Delta_{\{1,3\}} = 3, \, \Delta_{\{1,4\}} = 2, \, \Delta_{\{2,3\}} = 4, \, \Delta_{\{2,4\}} = 3, \, \Delta_{\{3,4\}} = 1$$

• Given $V \in Gr_{k,n}(\mathbb{R})$ in the form of a $k \times n$ matrix, for k-subsets I of $\{1, \dots, n\}$ let $\Delta_I(V)$ be the $k \times k$ minor of V in columns I. The *Plücker* coordinates $\Delta_I(V)$ are well defined up to a common nonzero scalar.

• The Grassmannian $\operatorname{Gr}_{k,n}(\mathbb{R})$ is the set of k-dimensional subspaces of \mathbb{R}^n .

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}(\mathbb{R})$$

$$\Delta_{\{1,2\}} = 1, \, \Delta_{\{1,3\}} = 3, \, \Delta_{\{1,4\}} = 2, \, \Delta_{\{2,3\}} = 4, \, \Delta_{\{2,4\}} = 3, \, \Delta_{\{3,4\}} = 1$$

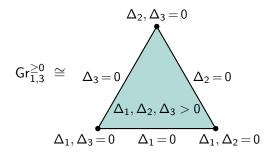
Given V ∈ Gr_{k,n}(ℝ) in the form of a k × n matrix, for k-subsets I of {1, · · ·, n} let Δ_I(V) be the k × k minor of V in columns I. The Plücker coordinates Δ_I(V) are well defined up to a common nonzero scalar.
We call V ∈ Gr_{k,n}(ℝ) totally nonnegative if Δ_I(V) ≥ 0 for all k-subsets I. The set of all such V forms the totally nonnegative Grassmannian Gr^{≥0}_{k,n} (Postnikov, Lusztig).

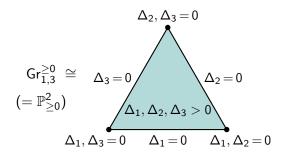
• The Grassmannian $\operatorname{Gr}_{k,n}(\mathbb{R})$ is the set of k-dimensional subspaces of \mathbb{R}^n .

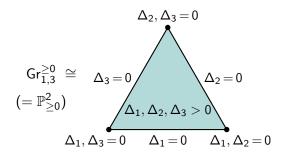
$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathsf{Gr}_{2,4}^{\geq 0}$$
$$= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

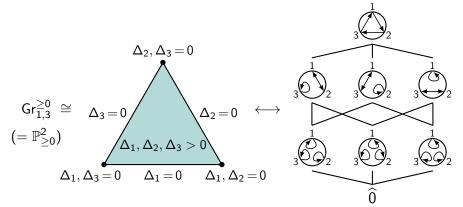
$$\Delta_{\{1,2\}} = 1, \, \Delta_{\{1,3\}} = 3, \, \Delta_{\{1,4\}} = 2, \, \Delta_{\{2,3\}} = 4, \, \Delta_{\{2,4\}} = 3, \, \Delta_{\{3,4\}} = 1$$

Given V ∈ Gr_{k,n}(ℝ) in the form of a k × n matrix, for k-subsets I of {1, · · ·, n} let Δ_I(V) be the k × k minor of V in columns I. The Plücker coordinates Δ_I(V) are well defined up to a common nonzero scalar.
We call V ∈ Gr_{k,n}(ℝ) totally nonnegative if Δ_I(V) ≥ 0 for all k-subsets I. The set of all such V forms the totally nonnegative Grassmannian Gr^{≥0}_{k,n} (Postnikov, Lusztig).









The topology of $Gr_{k,n}^{\geq 0}$

Conjecture (Postnikov (2007))

 $\operatorname{Gr}_{k,n}^{\geq 0}$ and its cell decomposition form a regular CW complex homeomorphic to a ball.

 $\operatorname{Gr}_{k,n}^{\geq 0}$ and its cell decomposition form a regular CW complex homeomorphic to a ball.

• Williams (2007): The poset of cells of $\operatorname{Gr}_{k,n}^{\geq 0}$ is shellable. In particular, it is the face poset of *some* regular CW complex homeomorphic to a ball.

 $\operatorname{Gr}_{k,n}^{\geq 0}$ and its cell decomposition form a regular CW complex homeomorphic to a ball.

Williams (2007): The poset of cells of Gr^{≥0}_{k,n} is shellable. In particular, it is the face poset of *some* regular CW complex homeomorphic to a ball.
Postnikov, Speyer, Williams (2009): Gr^{≥0}_{k,n} is a CW complex (via the *matching polytope* of a plabic graph).

 $\operatorname{Gr}_{k,n}^{\geq 0}$ and its cell decomposition form a regular CW complex homeomorphic to a ball.

Williams (2007): The poset of cells of Gr^{≥0}_{k,n} is shellable. In particular, it is the face poset of *some* regular CW complex homeomorphic to a ball.
Postnikov, Speyer, Williams (2009): Gr^{≥0}_{k,n} is a CW complex (via the *matching polytope* of a plabic graph).

• Rietsch, Williams (2010): Each (closed) cell of $Gr_{k,n}^{\geq 0}$ is contractible.

 $\operatorname{Gr}_{k,n}^{\geq 0}$ and its cell decomposition form a regular CW complex homeomorphic to a ball.

Williams (2007): The poset of cells of Gr^{≥0}_{k,n} is shellable. In particular, it is the face poset of *some* regular CW complex homeomorphic to a ball.
Postnikov, Speyer, Williams (2009): Gr^{≥0}_{k,n} is a CW complex (via the *matching polytope* of a plabic graph).

• Rietsch, Williams (2010): Each (closed) cell of $Gr_{k,n}^{\geq 0}$ is contractible.

Theorem (Galashin, Karp, L.)

Postnikov's conjecture holds.

 $\operatorname{Gr}_{k,n}^{\geq 0}$ and its cell decomposition form a regular CW complex homeomorphic to a ball.

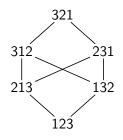
Williams (2007): The poset of cells of Gr^{≥0}_{k,n} is shellable. In particular, it is the face poset of *some* regular CW complex homeomorphic to a ball.
Postnikov, Speyer, Williams (2009): Gr^{≥0}_{k,n} is a CW complex (via the *matching polytope* of a plabic graph).

• Rietsch, Williams (2010): Each (closed) cell of $Gr_{k,n}^{\geq 0}$ is contractible.

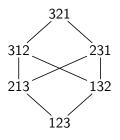
Theorem (Galashin, Karp, L.)

Postnikov's conjecture holds.

Why study the topology of totally positive spaces?

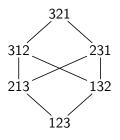


 \mathfrak{S}_3



 \mathfrak{S}_3

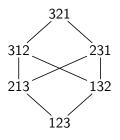
• Edelman (1981) showed that intervals in \mathfrak{S}_n are *shellable*. By results of Björner (1984) and Danaraj and Klee (1974), this implies \mathfrak{S}_n is the face poset of a *regular CW complex* homeomorphic to a ball, the 'next best thing' to a convex polytope.



 \mathfrak{S}_3

• Edelman (1981) showed that intervals in \mathfrak{S}_n are *shellable*. By results of Björner (1984) and Danaraj and Klee (1974), this implies \mathfrak{S}_n is the face poset of a *regular CW complex* homeomorphic to a ball, the 'next best thing' to a convex polytope.

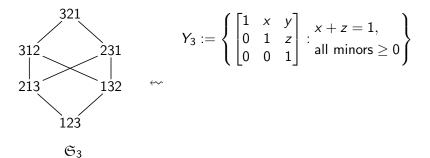
• Bernstein: Is there a 'naturally occurring' such regular CW complex?



 \mathfrak{S}_3

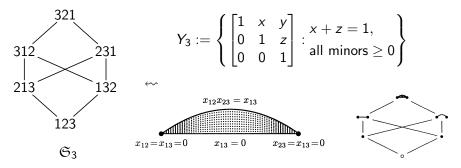
• Edelman (1981) showed that intervals in \mathfrak{S}_n are *shellable*. By results of Björner (1984) and Danaraj and Klee (1974), this implies \mathfrak{S}_n is the face poset of a *regular CW complex* homeomorphic to a ball, the 'next best thing' to a convex polytope.

• Bernstein: Is there a 'naturally occurring' such regular CW complex? • Fomin and Shapiro (2000) conjectured that $Y_n \subseteq SL_n$ is such a regular CW complex. This was proved by Hersh (2014), in general Lie type.



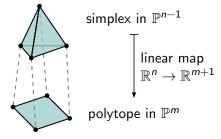
• Edelman (1981) showed that intervals in \mathfrak{S}_n are *shellable*. By results of Björner (1984) and Danaraj and Klee (1974), this implies \mathfrak{S}_n is the face poset of a *regular CW complex* homeomorphic to a ball, the 'next best thing' to a convex polytope.

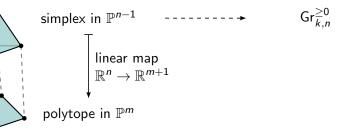
• Bernstein: Is there a 'naturally occurring' such regular CW complex? • Fomin and Shapiro (2000) conjectured that $Y_n \subseteq SL_n$ is such a regular CW complex. This was proved by Hersh (2014), in general Lie type.

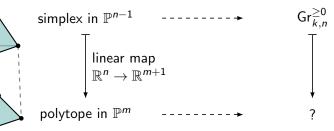


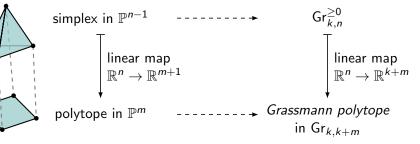
• Edelman (1981) showed that intervals in \mathfrak{S}_n are *shellable*. By results of Björner (1984) and Danaraj and Klee (1974), this implies \mathfrak{S}_n is the face poset of a *regular CW complex* homeomorphic to a ball, the 'next best thing' to a convex polytope.

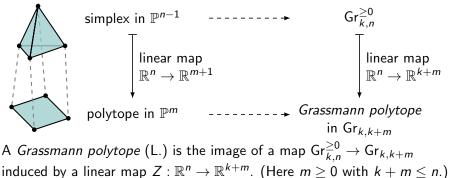
• Bernstein: Is there a 'naturally occurring' such regular CW complex? • Fomin and Shapiro (2000) conjectured that $Y_n \subseteq SL_n$ is such a regular CW complex. This was proved by Hersh (2014), in general Lie type.



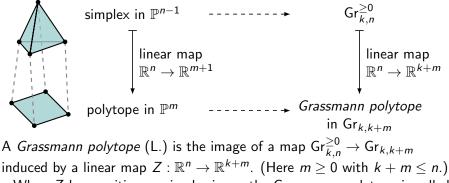




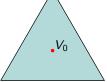


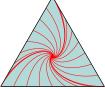


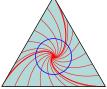
Polytopes are the prototypical example of closed balls in combinatorics.By definition, a polytope is the image of a simplex under an affine map:

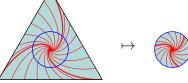


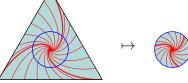
• When Z has positive maximal minors, the Grassmann polytope is called an *amplituhedron*. Amplituhedra generalize cyclic polytopes into the Grassmannian. They were introduced by Arkani-Hamed and Trnka (2014).











• Find a vector field σ on $\operatorname{Gr}_{k,n}(\mathbb{R})$ with a unique fixed point V_0 in $\operatorname{Gr}_{k,n}^{\geq 0}$, and show that every $V \in \operatorname{Gr}_{k,n}^{\geq 0}$ is sent to V_0 along the integral curves of σ . • e.g. $\operatorname{Gr}_{1,3}^{\geq 0}$

• Unfortunately, there exists closed positroid cells $\Pi_{f}^{\geq 0}$ such that every smooth vector field vanishes at a particular point $X_{\text{sing}} \in \Pi_{f}^{\geq 0}$.

Let C be a compact contractible topological manifold with boundary, such that its boundary ∂C is homeomorphic to a sphere of dimension $\dim(C) - 1$. Then C is homeomorphic to a closed ball.

Let C be a compact contractible topological manifold with boundary, such that its boundary ∂C is homeomorphic to a sphere of dimension $\dim(C) - 1$. Then C is homeomorphic to a closed ball.

• The interior $\Pi_f^{\geq 0}$ is known to be an open ball, and by Rietsch-Williams $\Pi_f^{\geq 0}$ is contractible.

Let C be a compact contractible topological manifold with boundary, such that its boundary ∂C is homeomorphic to a sphere of dimension $\dim(C) - 1$. Then C is homeomorphic to a closed ball.

- The interior $\Pi_f^{\geq 0}$ is known to be an open ball, and by Rietsch-Williams $\Pi_f^{\geq 0}$ is contractible.
- By induction on dimension (and poset topology results), we can assume that $\partial \Pi_f^{\geq 0}$ is a sphere.

Let C be a compact contractible topological manifold with boundary, such that its boundary ∂C is homeomorphic to a sphere of dimension $\dim(C) - 1$. Then C is homeomorphic to a closed ball.

- The interior $\Pi_f^{\geq 0}$ is known to be an open ball, and by Rietsch-Williams $\Pi_f^{\geq 0}$ is contractible.
- By induction on dimension (and poset topology results), we can assume that $\partial \Pi_f^{\geq 0}$ is a sphere.
- Show that C is a manifold with boundary using *link induction*:

$$\Pi^{>0}_{[f,g]} = \Pi^{>0}_f \times \operatorname{Cone}(\operatorname{Link}(f,g))$$

Let C be a compact contractible topological manifold with boundary, such that its boundary ∂C is homeomorphic to a sphere of dimension $\dim(C) - 1$. Then C is homeomorphic to a closed ball.

- The interior $\Pi_f^{\geq 0}$ is known to be an open ball, and by Rietsch-Williams $\Pi_f^{\geq 0}$ is contractible.
- By induction on dimension (and poset topology results), we can assume that $\partial \Pi_f^{\geq 0}$ is a sphere.
- Show that C is a manifold with boundary using *link induction*:

$$\Pi^{>0}_{[f,g]} = \Pi^{>0}_f \times \operatorname{Cone}(\operatorname{Link}(f,g))$$

• If both $\Pi_f^{>0}$ and $\operatorname{Link}(f,g)$ are known to be balls, then this shows that $\Pi_g^{\geq 0}$ is a manifold with boundary along $\Pi_f^{>0} \subset \partial \Pi_g^{\geq 0}$.

The end

We can also prove the same theorem for the full flag variety in any type.

The end

We can also prove the same theorem for the full flag variety in any type.

Thank you!