Electrical networks and Lie theory

Thomas Lam and Pavlo Pylyavskyy

April 2013

Electrical networks

An electrical network consisting only of resistors can be modeled by an undirected weighted graph Γ.

Edge weight $=$ conductance $=1 /$ resistance

The electrical properties are described by the response matrix

$$
\begin{gathered}
L(N): \mathbb{R}^{\# \text { boundary vertices }} \rightarrow \mathbb{R}^{\# \text { boundary vertices }} \\
\text { voltage vector } \longmapsto \text { current vector }
\end{gathered}
$$

which gives the current that flows through the boundary vertices when specified voltages are applied.

Axioms of electricity

The matrix $L(N)$ can be computed using only two axioms.

Kirchhoff's Law

The sum of currents flowing into an interior vertex is equal to 0 .

Axioms of electricity

The matrix $L(N)$ can be computed using only two axioms.

Kirchhoff's Law

The sum of currents flowing into an interior vertex is equal to 0 .

Ohm's Law

For each resistor we have

$$
\left(V_{1}-V_{2}\right)=I \times R
$$

where
$I=$ current flowing throught the resistor
$V_{1}, V_{2}=$ voltages at two ends of resistor
$R=$ resistance of the resistor
To compute $L(N)$, we give variables to each edge (current through that edge) and each vertex (voltage at that vertex). Then solve a large system of linear equations.

Some basic problems

Inverse problem
To what extent can we recover N from $L(N)$?

Inverse problem
To what extent can we recover N from $L(N)$?
Detection problem
Given a matrix M, how can we tell if $M=L(N)$ for some N ?

Inverse problem
To what extent can we recover N from $L(N)$?
Detection problem
Given a matrix M, how can we tell if $M=L(N)$ for some N ?

Equivalence problem
When do two networks N and N^{\prime} satisfy $L(N)=L\left(N^{\prime}\right)$?

Electrical relations

Series-parallel transformations:

Series-parallel transformations:

$Y-\Delta$, or star-triangle transformation:

$$
A=\frac{b c}{a+b+c}, \quad B=\frac{a c}{a+b+c}, \quad C=\frac{a b}{a+b+c},
$$

$a=\frac{A B+A C+B C}{A}, \quad b=\frac{A B+A C+B C}{B}, \quad c=\frac{A B+A C+B C}{C}$.

Planar electrical networks

Theorem (Curtis-Ingerman-Morrow and Colin de Verdière-Gitler-Vertigan)

Consider planar electrical networks with n boundary vertices.
1 Any two planar electrical networks N, N^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ are related by local electrical equivalences.
2 The space P_{n} of response matrices consists of symmetric $n \times n$ matrices, with row sums equal to 0 , and such that certain "circular minors" are nonnegative.
3 We have

$$
P_{n}=\sqcup_{G_{i}} \mathbb{R}_{>0}^{\# \text { edges in } G_{i}}
$$

where $\left\{G_{i}\right\}$ is a finite collection of unlabeled graphs, and each cell is parametrized by giving arbitrary positive weights to the edges.

Planar electrical networks

Theorem (Curtis-Ingerman-Morrow and Colin de Verdière-Gitler-Vertigan)

Consider planar electrical networks with n boundary vertices.
1 Any two planar electrical networks N, N^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ are related by local electrical equivalences.
2 The space P_{n} of response matrices consists of symmetric $n \times n$ matrices, with row sums equal to 0 , and such that certain "circular minors" are nonnegative.
3 We have

$$
P_{n}=\sqcup_{G_{i}} \mathbb{R}_{>0}^{\# \text { edges in } G_{i}}
$$

where $\left\{G_{i}\right\}$ is a finite collection of unlabeled graphs, and each cell is parametrized by giving arbitrary positive weights to the edges.

Recently, Kenyon-Wilson developed a theory connecting electrical networks to the enumeration of "groves" in graphs.

Operations on planar electrical networks

Operations on planar electrical networks

Operations on planar electrical networks

The operations $u_{i}(a)$ satisfy the relations:

$$
u_{i}(a) u_{i}(b)=u_{i}(a+b)
$$

due to series-parallel equivalences, and

The operations $u_{i}(a)$ satisfy the relations:

$$
u_{i}(a) u_{i}(b)=u_{i}(a+b)
$$

due to series-parallel equivalences, and
$u_{i}(a) u_{j}(b) u_{i}(c)=u_{j}\left(\frac{b c}{a+c+a b c}\right) u_{i}(a+c+a b c) u_{j}\left(\frac{a b}{a+c+a b c}\right)$ due to $Y-\Delta$ equivalence.

$$
x_{1}(a)=\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad x_{2}(a)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right)
$$

satisfies

$$
x_{1}(a) x_{2}(b) x_{1}(c)=x_{2}\left(\frac{b c}{a+c}\right) x_{1}(a+c) x_{2}\left(\frac{a b}{a+c}\right)
$$

$$
x_{1}(a)=\left(\begin{array}{ccc}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad x_{2}(a)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right)
$$

satisfies

$$
x_{1}(a) x_{2}(b) x_{1}(c)=x_{2}\left(\frac{b c}{a+c}\right) x_{1}(a+c) x_{2}\left(\frac{a b}{a+c}\right)
$$

Very similar to

$$
u_{i}(a) u_{j}(b) u_{i}(c)=u_{j}\left(\frac{b c}{a+c+a b c}\right) u_{i}(a+c+a b c) u_{j}\left(\frac{a b}{a+c+a b c}\right)
$$

generators: $e_{1}, e_{2}, \ldots, e_{2 n}$
relations:
■ $\left[e_{i}, e_{j}\right]=0$ if $|i-j| \geq 2$
$\square\left[e_{i},\left[e_{i}, e_{i \pm 1}\right]\right]=-2 e_{i}$
generators: $e_{1}, e_{2}, \ldots, e_{2 n}$
relations:
$\square\left[e_{i}, e_{j}\right]=0$ if $|i-j| \geq 2$
$\square\left[e_{i},\left[e_{i}, e_{i \pm 1}\right]\right]=-2 e_{i}$

Theorem (L.-Pylyavskyy)

1 We have $\mathfrak{e l}_{2 n}=\mathfrak{s p}_{2 n}$ and so $\operatorname{dim}\left(\mathfrak{e l}_{2 n}\right)=\operatorname{dim}\left(n_{+}\left(\mathfrak{s l}_{2 n+1}\right)\right)$.
2 In the simply-connected Lie group $E L_{2 n}(\mathbb{R})$ the elements

$$
u_{i}(t)=\exp \left(t e_{i}\right)
$$

satisfy all the relations from before.
generators: $e_{1}, e_{2}, \ldots, e_{2 n}$
relations:
$\square\left[e_{i}, e_{j}\right]=0$ if $|i-j| \geq 2$
$\square\left[e_{i},\left[e_{i}, e_{i \pm 1}\right]\right]=-2 e_{i}$

Theorem (L.-Pylyavskyy)

1 We have $\mathfrak{e l}_{2 n}=\mathfrak{s p}_{2 n}$ and so $\operatorname{dim}\left(\mathfrak{e l}_{2 n}\right)=\operatorname{dim}\left(n_{+}\left(\mathfrak{s l}_{2 n+1}\right)\right)$.
2 In the simply-connected Lie group $E L_{2 n}(\mathbb{R})$ the elements

$$
u_{i}(t)=\exp \left(t e_{i}\right)
$$

satisfy all the relations from before.

There appear to electrical Lie algebras associated to any Dynkin diagram of a finite-dimensional simple Lie algebra. Yi Su has described the type C analogue and associated action on mirror-symmetric planar electrical networks.

