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Infinite reduced words

Coxeter groups

A Coxeter group (W ,S) is a group generated by a set
S = {s1, s2, . . . , sr} of simple generators which are involutions
satisfying relations of the form

(si sj)
mij = 1

Definition

A word i1i2 · · · i` is a reduced word if ` is minimal amongst
expressions w = si1si2 · · · si` for w .

An infinite reduced word is a sequence i1i2i3 · · · such that each
initial subsequence i1i2 · · · ik is reduced.
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Example (Symmetric group S3)

S3 is generated by involutions s1, s2 with the relation

s1s2s1 = s2s1s2

No infinite reduced words.

Example (Affine symmetric group S̃3)

S̃3 is generated by involutions s0, s1, s2 with relations

s1s2s1 = s2s1s2 s0s1s0 = s1s0s1 s2s0s2 = s0s2s0

012012012012 · · · is an infinite reduced word
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Basic question

Question

What does a random infinite reduced word look like?

There are also many (very interesting) non-probabilistic questions!

1 Classification (up to braid equivalence), and the limit weak
order for infinite reduced words in affine Weyl groups (studied
with P. Pylyavskyy, also work of Ito, Cellini-Papi).

2 Infinite reduced words as geodesics in Coxeter (and Davis)
complexes and relation to Tits metric on the visual boundary
(studied with A. Thomas).
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Affine Coxeter groups

We will restrict ourselves to the case that W is an affine Weyl
group.

An affine Weyl group is a group generated by affine reflections
acting cocompactly on a Euclidean space.



The Ã2 arrangement

The affine symmetric group S̃3 acts simply-transitively on the
alcoves of this arrangement.



Ã1 × A1 arrangement



B̃2 arrangement



Weyl chambers

The Weyl chambers are formed by the hyperplanes passing through
the origin. Here there are six Weyl chambers, in bijection with the
finite Weyl group S3 (generated by reflections in these three
hyperplanes).



Infinite reduced word = walk in affine Coxeter arrangement

01 2

01 2

12 00

21 0 12 0

21 0 12 0

21 0 12 0

21 0 12 0

The above walk corresponds to the infinite reduced word
0120210201 · · · .

REDUCED = no hyperplane crossed more than once



Reduced random walk

Fix an affine Weyl group W .

The reduced random walk X = (X0,X1, . . .) is a sequence of
alcoves in the affine Coxeter arrangement of W , where each step is
chosen uniformly at random amongst choices which keep the walk
reduced.

Easy Facts:

1 These walks can never “get stuck”.

2 This process is a transient Markov chain.
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Main Theorem 1

Fix an affine Weyl group W . Let X = (X0,X1, . . .) be the reduced
random walk.

Theorem (L.)

There exists a unit vector ψ ∈ V such that almost surely

lim
k→∞

ν(Xk) ∈W · ψ

where ν(Xk) denotes the unit vector pointing towards the center of
the alcove Xk .

In other words, there is a finite collection {W · ψ} such that with
probability one, the reduced random walk asymptotically
approaches one of these directions.



Asymptotic directions

The asymptotic directions for S̃3.



A Markov chain on Wfin

Define a Markov chain on the finite Weyl group Wfin with
transitions of probability 1/r (with r = dimV + 1) given by either

w → siw if `(siw) < `(w)

or
w → rθw if `(rθw) > `(w)

Here rθ is the longest reflection in Wfin, and extra transitions from
w to w are added to make this a Markov chain.



The Markov chain for S3

1

s1s2s2s1

s1 s2

s1s2s1

All transitions have probability 1/3. Add self-loops to make this a
Markov chain.



Main Theorem 2

Theorem (L.)

The Markov chain on Wfin has a unique stationary distribution
ζ : Wfin → R. We have

ψ =
1

Z

∑
w∈Wfin:`(rθw)>`(w)

ζ(w)w−1(θ∨).



Probabilities of staying in a Weyl chamber

Since there are only finitely many Weyl chambers, the reducedness
condition implies that every reduced walk will eventually stay in
some Weyl chamber Cw . Write

X ∈ Cw

for this event.

Question

What is Prob(X ∈ Cw )?



Can you guess Prob(X ∈ Cw)?



The answer

2/9 2/9

2/9

1/9 1/9

1/9

In four dimensions, one chamber is 96 times more likely than the
least likely chamber.
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Main Theorem 3

Theorem (L.)

Prob(X ∈ Cw ) = ζ(w−1w0)

where w0 ∈Wfin is the longest element of Wfin.

Conjecture

Let W = S̃n.

1 ψ is in the same direction as ρ∨.

2

Prob(X ∈ Cw )

Prob(X ∈ C1)
∈ Z.

Many more conjectures for a multivariate generalization of the
Markov chain on Sn with L. Williams, suggesting very interesting
enumeration!
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n-cores

n-cores are a special class of partitions. Here we illustrate the
bijection between 3-cores and Grassmannian elements of S̃3.
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n-cores

n-cores are a special class of partitions. Here we illustrate the
bijection between 3-cores and Grassmannian elements of S̃3.
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The reduced word 02120 · · · gives the thickened line.



The limiting shape of a random n-core.

Corollary

There exists a piecewise-linear curve Cn such that most large
random n-cores (grown by the “reduced” process) has a shape
arbitrarily close to Cn.

This might be compared with Kerov and Vershik’s work on the
shape of a random partition.
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Taking n→∞

As n→∞, the piecewise-linear curve Cn, suitably scaled,
approaches (one branch of) the continuous conic

√
x +
√
y = 1

This curve has previously appeared as the limiting shape of another
random process...



Continuous time TASEP

Continuous time TASEP on the integer lattice:

An independent random variable (waiting time) with exponential
distribution is associated to each particle. The particle can jump
only if the site immediately to the right is empty.



Continuous time TASEP

Continuous time TASEP on the integer lattice:

Initial configuration:



Continuous time TASEP

Continuous time TASEP on the integer lattice:

Each configuration is associated with a piece-wise linear curve, or
Young diagram.



Continuous time TASEP

Continuous time TASEP on the integer lattice:

Johansson showed that the “limiting shape” of continuous time
TASEP with exponential waiting time is exactly the same curve

√
x +
√
y = 1

So for the affine symmetric group W = S̃n, and conditioning our
random walk to stay in the fundamental chamber, we obtain a
periodic analogue of continuous time TASEP: particles separated
by distance n are conditioned to jump simultaneously.


