Total positivity in combinatorics and representation theory

Thomas Lam

September 28, 2010

A real matrix is totally nonnegative (TNN) if every minor is nonnegative.
A real matrix is totally positive (TP) if every minor is positive.

A real matrix is totally nonnegative (TNN) if every minor is nonnegative.
A real matrix is totally positive (TP) if every minor is positive.

Example

$$
M=\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)
$$

is not TNN.

A real matrix is totally nonnegative (TNN) if every minor is nonnegative.
A real matrix is totally positive (TP) if every minor is positive.

Example

$$
M=\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)
$$

is not TNN.
But

$$
M=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 3 \\
1 & 3 & 3
\end{array}\right)
$$

is $T P$.

Examples of total nonnegative matrices first arose in analysis. The kernels $K(x, y)=e^{x y}$ and $K(x, y)=e^{-(x-y)^{2}}$ are totally nonnegative in the sense that the matrix

$$
M=\left(K\left(x_{i}, y_{j}\right)\right)_{i, j=1}^{k}
$$

is totally nonnegative for every

$$
\begin{aligned}
& x_{1}<x_{2}<\cdots<x_{k} \\
& y_{1}<y_{2}<\cdots<y_{k}
\end{aligned}
$$

We call these totally positive kernels.

Theorem (Gantmacher and Krein)
A totally positive matrix (or kernel) has positive and simple eigenvalues.

Theorem (Gantmacher and Krein)

A totally positive matrix (or kernel) has positive and simple eigenvalues.

Theorem (Schoenberg, Gantmacher and Krein, Karlin)

Let $K(x, y)$ be a TP kernel and $f(y)$ a function satisfying suitable integrability conditions. Then

$$
g(x)=\int_{\mathbb{R}} K(x, y) f(y) d y
$$

has no more sign-changes than $f(y)$.

Theorem (Loewner-Whitney)

$G L_{n}(\mathbb{R})_{\geq 0}$ is the semigroup generated by the positive diagonal matrices and positive Chevalley generators $e_{i}(t), f_{i}(t)$ with $t \geq 0$

Theorem (Loewner-Whitney)

$G L_{n}(\mathbb{R})_{\geq 0}$ is the semigroup generated by the positive diagonal matrices and positive Chevalley generators $e_{i}(t), f_{i}(t)$ with $t \geq 0$

$$
\operatorname{diag}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\left(\begin{array}{cccc}
t_{1} & 0 & 0 & 0 \\
0 & t_{2} & 0 & 0 \\
0 & 0 & t_{3} & 0 \\
0 & 0 & 0 & t_{4}
\end{array}\right) \quad t_{1}, t_{2}, t_{3}, t_{4}>0
$$

Theorem (Loewner-Whitney)

$G L_{n}(\mathbb{R})_{\geq 0}$ is the semigroup generated by the positive diagonal matrices and positive Chevalley generators $e_{i}(t), f_{i}(t)$ with $t \geq 0$

$$
\begin{gathered}
\operatorname{diag}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\left(\begin{array}{cccc}
t_{1} & 0 & 0 & 0 \\
0 & t_{2} & 0 & 0 \\
0 & 0 & t_{3} & 0 \\
0 & 0 & 0 & t_{4}
\end{array}\right) \quad t_{1}, t_{2}, t_{3}, t_{4}>0 \\
e_{2}(t)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & t & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad f_{1}(t)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
t & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Totally positive functions

A sequence a_{0}, a_{1}, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
\cdots & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
\cdots & 0 & 0 & a_{0} & a_{1} & \cdots \\
\cdots & 0 & 0 & 0 & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is TNN (caution: not TP!).

Totally positive functions

A sequence a_{0}, a_{1}, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
\cdots & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
\cdots & 0 & 0 & a_{0} & a_{1} & \cdots \\
\cdots & 0 & 0 & 0 & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is TNN (caution: not TP!).

$$
a_{i} \geq 0
$$

Totally positive functions

A sequence a_{0}, a_{1}, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
\cdots & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
\cdots & 0 & 0 & a_{0} & a_{1} & \cdots \\
\cdots & 0 & 0 & 0 & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is TNN (caution: not TP!).

$$
a_{i} \geq 0 \quad a_{1}^{2}-a_{0} a_{2} \geq 0
$$

Totally positive functions

A sequence a_{0}, a_{1}, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
\cdots & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
\cdots & 0 & 0 & a_{0} & a_{1} & \cdots \\
\cdots & 0 & 0 & 0 & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is TNN (caution: not TP!).

$$
a_{i} \geq 0 \quad a_{1}^{2}-a_{0} a_{2} \geq 0 \quad a_{1}^{3}+a_{3} a_{0}^{2}-2 a_{0} a_{1} a_{2} \geq 0
$$

Totally positive functions

A sequence a_{0}, a_{1}, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
\cdots & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
\cdots & 0 & 0 & a_{0} & a_{1} & \cdots \\
\cdots & 0 & 0 & 0 & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is TNN (caution: not TP!).

$$
a_{i} \geq 0 \quad a_{1}^{2}-a_{0} a_{2} \geq 0 \quad a_{1}^{3}+a_{3} a_{0}^{2}-2 a_{0} a_{1} a_{2} \geq 0 \ldots
$$

A sequence a_{0}, a_{1}, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
\cdots & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
\cdots & 0 & 0 & a_{0} & a_{1} & \cdots \\
\cdots & 0 & 0 & 0 & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is TNN (caution: not TP!).

$$
a_{i} \geq 0 \quad a_{1}^{2}-a_{0} a_{2} \geq 0 \quad a_{1}^{3}+a_{3} a_{0}^{2}-2 a_{0} a_{1} a_{2} \geq 0 \ldots
$$

The formal power series $a(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots$ is then called a totally positive function. Totally positive functions form a semigroup.

Edrei-Thoma theorem

Fact: If $a(t)$ is totally positive, then it is automatically a meromorphic function, holomorphic in a neighborhood of 0 .

Fact: If $a(t)$ is totally positive, then it is automatically a meromorphic function, holomorphic in a neighborhood of 0 .

Theorem

Every normalized ($a_{0}=a_{1}=1$) totally positive sequence has generating function of the form

$$
a(t)=e^{\gamma t} \prod_{i=1}^{\infty} \frac{1+\alpha_{i} t}{1-\beta_{i} t}
$$

where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq 0, \beta_{1} \geq \beta_{2} \geq \cdots \geq 0, \gamma \geq 0$, and $\gamma+\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$. Conversely, all such sets of parameters give a normalized totally positive function.

Fact: If $a(t)$ is totally positive, then it is automatically a meromorphic function, holomorphic in a neighborhood of 0 .

Theorem

Every normalized ($a_{0}=a_{1}=1$) totally positive sequence has generating function of the form

$$
a(t)=e^{\gamma t} \prod_{i=1}^{\infty} \frac{1+\alpha_{i} t}{1-\beta_{i} t}
$$

where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq 0, \beta_{1} \geq \beta_{2} \geq \cdots \geq 0, \gamma \geq 0$, and $\gamma+\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$. Conversely, all such sets of parameters give a normalized totally positive function.

The proof of this theorem relies on deep results in complex analysis (Nevanlinna theory).

Theorem (Thoma, Kerov-Vershik)
The following sets are in bijection (homeomorphic):

- Normalized totally positive functions.

Theorem (Thoma, Kerov-Vershik)
The following sets are in bijection (homeomorphic):

- Normalized totally positive functions.
- Characters χ of the infinite symmetric group S_{∞}.

Theorem (Thoma, Kerov-Vershik)

The following sets are in bijection (homeomorphic):

- Normalized totally positive functions.
- Characters χ of the infinite symmetric group S_{∞}.

■ (Normalized) homomorphisms $\phi: \operatorname{Sym} \rightarrow \mathbb{R}$ such that $\phi\left(s_{\lambda}\right) \geq 0$ for each Schur function s_{λ}.

Theorem (Thoma, Kerov-Vershik)

The following sets are in bijection (homeomorphic):

- Normalized totally positive functions.
- Characters χ of the infinite symmetric group S_{∞}.
- (Normalized) homomorphisms $\phi: \operatorname{Sym} \rightarrow \mathbb{R}$ such that $\phi\left(s_{\lambda}\right) \geq 0$ for each Schur function s_{λ}.
- Extremal Markov chains on Young's lattice of partitions, such that the probability of a tableau only depends on its shape.

Infinite symmetric group

The symmetric group S_{n} permuting n elements embeds into S_{n+1} as the subgroup fixing $n+1$. The inductive limit S_{∞}

$$
S_{1} \subset S_{2} \subset \cdots \subset S_{\infty}
$$

is called the infinite symmetric group.

Infinite symmetric group

The symmetric group S_{n} permuting n elements embeds into S_{n+1} as the subgroup fixing $n+1$. The inductive limit S_{∞}

$$
S_{1} \subset S_{2} \subset \cdots \subset S_{\infty}
$$

is called the infinite symmetric group.
A character χ of S_{∞} is a function $\chi: S_{\infty} \rightarrow \mathbb{C}$ that is central, positive definite, normalized, and extremal.

Infinite symmetric group

The symmetric group S_{n} permuting n elements embeds into S_{n+1} as the subgroup fixing $n+1$. The inductive limit S_{∞}

$$
S_{1} \subset S_{2} \subset \cdots \subset S_{\infty}
$$

is called the infinite symmetric group.
A character χ of S_{∞} is a function $\chi: S_{\infty} \rightarrow \mathbb{C}$ that is central, positive definite, normalized, and extremal.

Under the correspondence (Thoma)
\{totally positive functions $\} \leftrightarrow\left\{\right.$ characters of $\left.S_{\infty}\right\}$
one has (Okounkov)
poles and zeroes $\left\{\alpha_{i}, \beta_{i}\right\} \leftrightarrow$ atoms of particular spectral measure

Partitions

A partition λ of n is a sequence

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right)
$$

of nonnegative integers, such that $\lambda_{1}+\lambda_{2}+\cdots=n$.

Partitions

A partition λ of n is a sequence

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right)
$$

of nonnegative integers, such that $\lambda_{1}+\lambda_{2}+\cdots=n$.

Example

$(4,3,1,1)$ is a partition of 9 .

Partitions

A partition λ of n is a sequence

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right)
$$

of nonnegative integers, such that $\lambda_{1}+\lambda_{2}+\cdots=n$.

Example

$(4,3,1,1)$ is a partition of 9 .

We have

$$
\text { irreps of } S_{n} \stackrel{1: 1}{\longleftrightarrow} \text { partitions of } n
$$

Symmetric functions

Sym denotes the ring of formal power series of bounded degree in the variables x_{1}, x_{2}, \ldots, invariant under action of S_{∞} on the indices. There is an isomorphism (Frobenius character)

$$
\operatorname{Sym}=\operatorname{Sym}_{\mathbb{R}} \cong \oplus_{\mathrm{n} \geq 0} \operatorname{Rep}\left(\mathrm{~S}_{\mathrm{n}}\right) \otimes \mathbb{R}
$$

where
irrep labeled by $\lambda \leftrightarrow$ Schur function $s_{\lambda}\left(x_{1}, x_{2}, \ldots\right)$.

Sym denotes the ring of formal power series of bounded degree in the variables x_{1}, x_{2}, \ldots, invariant under action of S_{∞} on the indices. There is an isomorphism (Frobenius character)

$$
\operatorname{Sym}=\operatorname{Sym}_{\mathbb{R}} \cong \oplus_{\mathrm{n} \geq 0} \operatorname{Rep}\left(\mathrm{~S}_{\mathrm{n}}\right) \otimes \mathbb{R}
$$

where
irrep labeled by $\lambda \leftrightarrow$ Schur function $s_{\lambda}\left(x_{1}, x_{2}, \ldots\right)$.
A character $\chi: S_{\infty} \rightarrow \mathbb{C}$ gives rise to a homomorphism $\phi: \operatorname{Sym} \rightarrow \mathbb{R}$, where

$$
\phi\left(s_{\lambda}\right)=\text { coefficient of } \chi_{\lambda} \text { in }\left.\chi\right|_{s_{n}}
$$

Sym denotes the ring of formal power series of bounded degree in the variables x_{1}, x_{2}, \ldots, invariant under action of S_{∞} on the indices. There is an isomorphism (Frobenius character)

$$
\operatorname{Sym}=\operatorname{Sym}_{\mathbb{R}} \cong \oplus_{\mathrm{n} \geq 0} \operatorname{Rep}\left(\mathrm{~S}_{\mathrm{n}}\right) \otimes \mathbb{R}
$$

where

$$
\text { irrep labeled by } \lambda \leftrightarrow \text { Schur function } s_{\lambda}\left(x_{1}, x_{2}, \ldots\right) .
$$

A character $\chi: S_{\infty} \rightarrow \mathbb{C}$ gives rise to a homomorphism $\phi: \operatorname{Sym} \rightarrow \mathbb{R}$, where

$$
\phi\left(s_{\lambda}\right)=\text { coefficient of } \chi_{\lambda} \text { in }\left.\chi\right|_{s_{n}}
$$

and
poles and zeroes $\left\{\alpha_{i}, \beta_{i}\right\} \leftrightarrow$ what to specialize the variables x_{1}, x_{2}, \ldots

Young's graph arises from containment of partitions:

Markov chains $X_{0}, X_{1} \ldots$ on this graph, such that ■ X_{i} is a partition of i.

Markov chains $X_{0}, X_{1} \ldots$ on this graph, such that
■ X_{i} is a partition of i.
■ the probability

$$
p\left(\lambda^{(n)}\right):=\mathbb{P}\left(X_{0}=\lambda^{(0)}, X_{1}=\lambda^{(1)}, \ldots, X_{n}=\lambda^{(n)}\right) \text { only }
$$ depends on $\lambda^{(n)}$

Markov chains $X_{0}, X_{1} \ldots$ on this graph, such that
■ X_{i} is a partition of i.
■ the probability

$$
p\left(\lambda^{(n)}\right):=\mathbb{P}\left(X_{0}=\lambda^{(0)}, X_{1}=\lambda^{(1)}, \ldots, X_{n}=\lambda^{(n)}\right) \text { only }
$$ depends on $\lambda^{(n)}$

■ the probability function $p(\lambda)$ is not a nonnegative linear combination of similar probability functions are in bijection with normalized TP-functions.

Markov chains $X_{0}, X_{1} \ldots$ on this graph, such that
■ X_{i} is a partition of i.
■ the probability

$$
p\left(\lambda^{(n)}\right):=\mathbb{P}\left(X_{0}=\lambda^{(0)}, X_{1}=\lambda^{(1)}, \ldots, X_{n}=\lambda^{(n)}\right) \text { only }
$$ depends on $\lambda^{(n)}$

■ the probability function $p(\lambda)$ is not a nonnegative linear combination of similar probability functions
are in bijection with normalized TP-functions.
Under this correspondence

$$
p(\lambda)=\phi\left(s_{\lambda}\right)
$$

and (Kerov-Vershik)
poles and zeroes $\left\{\alpha_{i}, \beta_{i}\right\} \leftrightarrow$ scaled lengths of i-th rows and columns

Block-Toeplitz:

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
\cdots & 0 & b_{0} & b_{1} & b_{2} & \cdots \\
\cdots & 0 & 0 & a_{0} & a_{1} & \cdots \\
\cdots & 0 & 0 & 0 & b_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) ?
$$

Finite:

$$
\left(\begin{array}{ccccc}
1 & a_{0} & a_{1} & a_{2} & a_{3} \\
0 & 1 & a_{0} & a_{1} & a_{2} \\
0 & 0 & 1 & a_{0} & a_{1} \\
0 & 0 & 0 & 1 & a_{0} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) ?
$$

Consider the formal loop group $G L_{n}(\mathbb{R}((t)))$ consisting of (invertible) $n \times n$ matrices, whose entries are formal Laurent series. To each such matrix $X(t)$ we can associate an infinite periodic (block-Toeplitz) matrix $A(X)$:

$$
\left(\begin{array}{cc}
1+t^{2} & 2+5 t \\
-1-t & -4 t^{2}
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccccccc}
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\ldots & 0 & 5 & 1 & 0 & 0 & 0 & \ldots \\
\cdots & -1 & 0 & 0 & -4 & 0 & 0 & \ldots \\
\cdots & 1 & 2 & 0 & 5 & 1 & 0 & \ldots \\
\cdots & -1 & 0 & -1 & 0 & 0 & -4 & \ldots \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)
$$

Consider the formal loop group $G L_{n}(\mathbb{R}((t)))$ consisting of (invertible) $n \times n$ matrices, whose entries are formal Laurent series. To each such matrix $X(t)$ we can associate an infinite periodic (block-Toeplitz) matrix $A(X)$:
$\left(\begin{array}{cc}1+t^{2} & 2+5 t \\ -1-t & -4 t^{2}\end{array}\right) \rightsquigarrow\left(\begin{array}{cccccccc} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\ \ldots & 0 & 5 & 1 & 0 & 0 & 0 & \ldots \\ \cdots & -1 & 0 & 0 & -4 & 0 & 0 & \ldots \\ \cdots & 1 & 2 & 0 & 5 & 1 & 0 & \ldots \\ \cdots & -1 & 0 & -1 & 0 & 0 & -4 & \ldots \\ & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \end{array}\right)$
A matrix $X(t) \in G L_{n}(\mathbb{R}((t)))$ is TNN if $A(X)$ is.

Consider the formal loop group $G L_{n}(\mathbb{R}((t)))$ consisting of (invertible) $n \times n$ matrices, whose entries are formal Laurent series. To each such matrix $X(t)$ we can associate an infinite periodic (block-Toeplitz) matrix $A(X)$:

$$
\left(\begin{array}{cc}
1+t^{2} & 2+5 t \\
-1-t & -4 t^{2}
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccccccc}
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\ldots & 0 & 5 & 1 & 0 & 0 & 0 & \ldots \\
\cdots & -1 & 0 & 0 & -4 & 0 & 0 & \ldots \\
\cdots & 1 & 2 & 0 & 5 & 1 & 0 & \ldots \\
\cdots & -1 & 0 & -1 & 0 & 0 & -4 & \ldots \\
& \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)
$$

A matrix $X(t) \in G L_{n}(\mathbb{R}((t)))$ is TNN if $A(X)$ is. Note that $A(X(t) Y(t))=A(X) A(Y)$.

So the study of totally positive functions fits into the framework of infinite-dimensional Lie groups. Lusztig previously extended total positivity to real reductive groups.

So the study of totally positive functions fits into the framework of infinite-dimensional Lie groups. Lusztig previously extended total positivity to real reductive groups.

The case where $X=X(0)$ corresponds to $G L_{n}(\mathbb{R})_{\geq 0}$. The case $n=1$ corresponds to totally positive functions.

So the study of totally positive functions fits into the framework of infinite-dimensional Lie groups. Lusztig previously extended total positivity to real reductive groups.

The case where $X=X(0)$ corresponds to $G L_{n}(\mathbb{R})_{\geq 0}$. The case $n=1$ corresponds to totally positive functions.

Like for totally positive functions, a matrix $X(t) \in G L_{n}(\mathbb{R}((t)))_{\geq 0}$ is automatically meromorphic (every matrix entry is a meromorphic function).

So the study of totally positive functions fits into the framework of infinite-dimensional Lie groups. Lusztig previously extended total positivity to real reductive groups.

The case where $X=X(0)$ corresponds to $G L_{n}(\mathbb{R})_{\geq 0}$. The case $n=1$ corresponds to totally positive functions.

Like for totally positive functions, a matrix $X(t) \in G L_{n}(\mathbb{R}((t)))_{\geq 0}$ is automatically meromorphic (every matrix entry is a meromorphic function).
Which matrices play the role of poles and zeroes for $G L_{n}(\mathbb{R}((t)))$?

Whirls and curls

Whirls $M\left(\beta_{i}^{(1)}, \ldots, \beta_{i}^{(n)}\right)$, and curls $N\left(\alpha_{i}^{(1)}, \ldots, \alpha_{i}^{(n)}\right)$, depending on n (positive) parameters.
Let $n=2$.

$$
\begin{aligned}
& M(a, b)=\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & 1 & a & 0 & 0 & \cdots \\
\cdots & 0 & 1 & b & 0 & \cdots \\
\cdots & 0 & 0 & 1 & a & \cdots \\
\cdots & 0 & 0 & 0 & 1 & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
& N(a, b)=\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & 1 & a & a b & a^{2} b & \cdots \\
\cdots & 0 & 1 & b & a b & \cdots \\
\cdots & 0 & 0 & 1 & a & \cdots \\
\cdots & 0 & 0 & 0 & 1 & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
\end{aligned}
$$

For $n=1, M(\alpha)$ and $N(\beta)$ are exactly $(1+\alpha t)$ and $1 /(1-\beta t)$.

Whirls and curls

For $n=1, M(\alpha)$ and $N(\beta)$ are exactly $(1+\alpha t)$ and $1 /(1-\beta t)$.
Unlike the factors $(1+\alpha t)$ and $(1+\beta t)$, two whirls $M\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $M\left(\beta_{1}, \ldots, \beta_{n}\right)$ do not always commute, but satisfy a commutation relation involving a rational transformation of the parameters.

For $n=1, M(\alpha)$ and $N(\beta)$ are exactly $(1+\alpha t)$ and $1 /(1-\beta t)$.
Unlike the factors $(1+\alpha t)$ and $(1+\beta t)$, two whirls $M\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $M\left(\beta_{1}, \ldots, \beta_{n}\right)$ do not always commute, but satisfy a commutation relation involving a rational transformation of the parameters.

Theorem (L.-Pylyavskyy)

The transformation $(\alpha, \beta) \mapsto\left(\alpha^{\prime}, \beta^{\prime}\right)$, where $M(\alpha) M(\beta)=M\left(\alpha^{\prime}\right) M\left(\beta^{\prime}\right)$ is the "birational R-matrix" for the symmetric power representation of $U_{q}\left(\hat{\mathfrak{s}} l_{n}\right)$.

The R-matrix $R: V \otimes W \cong W \otimes V$ interchanges factors in tensor products of representations of quantum groups.

Theorem (L.-Pylyavskyy)

Every upper triangular $X \in G L_{n}(\mathbb{R}((t)))$ can be factorized as

$$
\prod_{i=1}^{\infty} N\left(\alpha_{i}^{(1)}, \ldots, \alpha_{i}^{(n)}\right) \exp (Y(t)) \prod_{i=-\infty}^{-1} M\left(\beta_{i}^{(1)}, \ldots, \beta_{i}^{(n)}\right)
$$

for suitable positive parameters, where $Y(t)$ is entire.
Furthermore, the three factors are unique.

Theorem (L.-Pylyavskyy)

Every upper triangular $X \in G L_{n}(\mathbb{R}((t)))$ can be factorized as

$$
\prod_{i=1}^{\infty} N\left(\alpha_{i}^{(1)}, \ldots, \alpha_{i}^{(n)}\right) \exp (Y(t)) \prod_{i=-\infty}^{-1} M\left(\beta_{i}^{(1)}, \ldots, \beta_{i}^{(n)}\right)
$$

for suitable positive parameters, where $Y(t)$ is entire.
Furthermore, the three factors are unique.
There is a ring LSym with a distinguished spanning set, called Loop symmetric functions, such that

TNN points of loop group $\stackrel{1: 1}{\longleftrightarrow}$ positive homomorphisms of LSym

Infinite products of Chevalley generators

What's going on in the $\exp (Y(t))$ part?

What's going on in the $\exp (Y(t))$ part?
This part of $G L_{n}(\mathbb{R}((t))) \geq 0$ contains elements of the form

$$
X=e_{i_{1}}\left(t_{1}\right) e_{i_{2}}\left(t_{2}\right) e_{i_{3}}\left(t_{3}\right) \cdots
$$

where $\left\{e_{i}(t) \mid i \in \mathbb{Z} / n \mathbb{Z}\right\}$ are the (affine) Chevalley generators.
$n=3$
$e_{1}(a)=\left(\begin{array}{lll}1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad e_{2}(a)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1\end{array}\right) \quad e_{0}(a)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a t & 0 & 1\end{array}\right)$

What's going on in the $\exp (Y(t))$ part?
This part of $G L_{n}(\mathbb{R}((t))) \geq 0$ contains elements of the form

$$
X=e_{i_{1}}\left(t_{1}\right) e_{i_{2}}\left(t_{2}\right) e_{i_{3}}\left(t_{3}\right) \cdots
$$

where $\left\{e_{i}(t) \mid i \in \mathbb{Z} / n \mathbb{Z}\right\}$ are the (affine) Chevalley generators.
Very often these can also be written as

$$
X=e_{j_{1}}\left(t_{1}^{\prime}\right) e_{j_{2}}\left(t_{2}^{\prime}\right) e_{j_{3}}\left(t_{3}^{\prime}\right) \cdots
$$

This leads to a notion of braid limits inside Coxeter groups.

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

$$
1012012012012 \text {... }
$$

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

1012012012012...

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

$0102012012012 \ldots$

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

$$
0120121012012 \text {... }
$$

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

$$
0120121012012 \text {... }
$$

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to
$0120120102012 \ldots$

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

$$
1012012012012 \ldots \longrightarrow 01201201201 \ldots
$$

Example of braid limit

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

$$
1012012012012 \ldots \longrightarrow 01201201201 \ldots
$$

You can't go back!!!

Take $n=3$, and the affine symmetric group with simple generators s_{0}, s_{1}, s_{2} satisfying

$$
s_{0}^{2}=s_{1}^{2}=s_{2}^{2}=1
$$

$$
s_{0} s_{1} s_{0}=s_{1} s_{0} s_{1} \quad s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2} \quad s_{0} s_{2} s_{0}=s_{2} s_{0} s_{2}
$$

Let's apply braid moves to

$$
1012012012012 \ldots \longrightarrow 01201201201 \ldots
$$

You can't go back!!!

Theorem (L.-Pylyavskyy)

Can always end up at an infinite power of a Coxeter element. For $n=3:(012)^{\infty},(120)^{\infty},(201)^{\infty},(210)^{\infty},(102)^{\infty},(021)^{\infty}$

What about finite totally nonnegative matrices of the form

$$
M=\left(\begin{array}{ccccc}
1 & a_{0} & a_{1} & a_{2} & a_{3} \\
0 & 1 & a_{0} & a_{1} & a_{2} \\
0 & 0 & 1 & a_{0} & a_{1} \\
0 & 0 & 0 & 1 & a_{0} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) ?
$$

What about finite totally nonnegative matrices of the form

$$
M=\left(\begin{array}{ccccc}
1 & a_{0} & a_{1} & a_{2} & a_{3} \\
0 & 1 & a_{0} & a_{1} & a_{2} \\
0 & 0 & 1 & a_{0} & a_{1} \\
0 & 0 & 0 & 1 & a_{0} \\
0 & 0 & 0 & 0 & 1
\end{array}\right) ?
$$

This problem was studied by Rietsch.

Consider all finite Toeplitz matrices form with complex entries, which is an algebraic variety X isomorphic to \mathbb{C}^{n-1}.

Consider all finite Toeplitz matrices form with complex entries, which is an algebraic variety X isomorphic to \mathbb{C}^{n-1}.

Theorem (Ginzburg, Peterson)

We have a canonical isomorphism

$$
\mathcal{O}(X) \simeq H_{*}\left(\operatorname{Gr}_{S L_{n}}, \mathbb{C}\right)
$$

between the ring of functions $\mathcal{O}(X)$ and the homology of the affine Grassmannian $\operatorname{Gr}_{S L_{n}}=S L_{n}(\mathbb{C}((t))) / S L_{n}(\mathbb{C}[[t]])$.

Affine Grassmannian

1 The space $\mathrm{Gr}_{S L_{n}}$ is an ind-scheme, with distinguished subvarieties called Schubert varieties.

1 The space $\mathrm{Gr}_{S L_{n}}$ is an ind-scheme, with distinguished subvarieties called Schubert varieties.
2 The space $\mathrm{Gr}_{S L_{n}}$ is weak homotopy-equivalent to the based loop space

$$
\Omega S U(n)=\left\{f: S^{1} \rightarrow S U(n) \mid f(1)=1\right\}
$$

giving $H_{*}\left(\mathrm{Gr}_{S L_{n}}\right)$ a ring structure.

1 The space $\mathrm{Gr}_{S L_{n}}$ is an ind-scheme, with distinguished subvarieties called Schubert varieties.
2 The space $\mathrm{Gr}_{S L_{n}}$ is weak homotopy-equivalent to the based loop space

$$
\Omega S U(n)=\left\{f: S^{1} \rightarrow S U(n) \mid f(1)=1\right\}
$$

giving $H_{*}\left(\mathrm{Gr}_{S L_{n}}\right)$ a ring structure.
3 The ring $H_{*}\left(\mathrm{Gr}_{S L_{n}}\right)$ contains a distinguished basis $\left\{\sigma_{w}\right\}$ called the Schubert basis:

$$
H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)=\oplus_{w} \mathbb{C} \cdot \sigma_{w}
$$

Theorem (Rietsch, translated via the next theorem) $M \in X(\mathbb{R})$ is "totally positive" $\Leftrightarrow \sigma_{w}(M)>0$ for all w.

Theorem (Rietsch, translated via the next theorem)
$M \in X(\mathbb{R})$ is "totally positive" $\Leftrightarrow \sigma_{w}(M)>0$ for all w.
Rietsch's result is originally stated in terms of the quantum cohomology $Q H^{*}\left(G L_{n} / B\right)$ of the flag variety replacing $H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$.

Theorem (Peterson; L.-Shimozono)
$Q H^{*}\left(G L_{n} / B\right)$ and $H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$ (together with their Schubert bases) can be identified after localization.

Theorem (Rietsch, translated via the next theorem)
$M \in X(\mathbb{R})$ is "totally positive" $\Leftrightarrow \sigma_{w}(M)>0$ for all w.
Rietsch's result is originally stated in terms of the quantum cohomology $Q H^{*}\left(G L_{n} / B\right)$ of the flag variety replacing $H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$.

Theorem (Peterson; L.-Shimozono)

$Q H^{*}\left(G L_{n} / B\right)$ and $H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$ (together with their Schubert bases) can be identified after localization.

There is also a "parametrization" result which is of a flavor different to the Edrei-Thoma theorem.

k-Schur functions and cores

Theorem (L.)

The following sets are in bijection:
■ The totally nonnegative finite Toeplitz matrices.

k-Schur functions and cores

Theorem (L.)

The following sets are in bijection:

- The totally nonnegative finite Toeplitz matrices.

■ Homomorphisms $\phi: \mathbb{Z}\left[h_{1}, h_{2}, \ldots, h_{n-1}\right] \rightarrow \mathbb{R}$ such that $\phi\left(s_{\lambda}^{(k)}\right) \geq 0$ for each k-Schur function $s_{\lambda}^{(k)}$.
$\mathbb{Z}\left[h_{1}, h_{2}, \ldots, h_{n-1}\right] \subset \operatorname{Sym}$ is generated by the first $n-1$ homogeneous symmetric functions.
$s_{\lambda}^{(k)}$ is the k-Schur function of Lapointe-Lascoux-Morse (with $k=n-1$, and $t=1$) occurring in the study of Macdonald polynomials.

Theorem (L.)

There is an isomorphism $H_{*}\left(\mathrm{Gr}_{S L_{n}}\right) \cong \mathbb{Z}\left[h_{1}, h_{2}, \ldots, h_{n-1}\right]$ sending Schubert classes to k-Schur functions.

k-Schur functions and cores

Theorem (L.)

The following sets are in bijection:

- The totally nonnegative finite Toeplitz matrices.

■ Homomorphisms $\phi: \mathbb{Z}\left[h_{1}, h_{2}, \ldots, h_{n-1}\right] \rightarrow \mathbb{R}$ such that $\phi\left(s_{\lambda}^{(k)}\right) \geq 0$ for each k-Schur function $s_{\lambda}^{(k)}$.

- Extremal Markov chains on the graph of n-cores, such that the probability of a tableau only depends on its shape.

In Young's lattice, boxes are added one at a time. In the graph of n-cores, many boxes can be added at the same step.

In Young's lattice, boxes are added one at a time. In the graph of n-cores, many boxes can be added at the same step.

For $n=3$

Schubert vs. total positivity via Geometric Satake
Why should Schubert positivity have anything to do with total positivity?

Why should Schubert positivity have anything to do with total positivity?

Write $G=S L_{n}(\mathbb{C})$.
Geometric Satake Correspondence (Ginzburg, Lusztig, Mirkovic-Vilonen)

Cat. of $G([[t]])$-equivariant perverse sheaves on $\operatorname{Gr}_{G} \cong \operatorname{Rep}\left(G^{\vee}\right)$

Why should Schubert positivity have anything to do with total positivity?

Write $G=S L_{n}(\mathbb{C})$.
Geometric Satake Correspondence (Ginzburg, Lusztig, Mirkovic-Vilonen)

Cat. of $G([[t]])$-equivariant perverse sheaves on $\operatorname{Gr}_{G} \cong \operatorname{Rep}\left(G^{\vee}\right)$

$$
H^{*}\left(I C_{\lambda}\right) \leftrightarrow V_{\lambda}
$$

where $I C_{\lambda}$ is an intersection homology sheaf, and V_{λ} is a highest-weight representation.

Why should Schubert positivity have anything to do with total positivity?

Write $G=S L_{n}(\mathbb{C})$.
Geometric Satake Correspondence (Ginzburg, Lusztig, Mirkovic-Vilonen)

Cat. of $G([[t]])$-equivariant perverse sheaves on $\operatorname{Gr}_{G} \cong \operatorname{Rep}\left(G^{\vee}\right)$

$$
H^{*}\left(I C_{\lambda}\right) \leftrightarrow V_{\lambda}
$$

where $I C_{\lambda}$ is an intersection homology sheaf, and V_{λ} is a highest-weight representation.

MV-cycles $\subset \operatorname{Gr}_{G} \leftrightarrow$ weight vectors in irreps of G^{\vee}

Each MV-cycle $Z \subset \mathrm{Gr}_{S L_{n}}$ is an effective cycle.

Each MV-cycle $Z \subset \mathrm{Gr}_{S L_{n}}$ is an effective cycle.
So $[Z] \in H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$ is a nonnegative linear combination of the Schubert classes $\sigma_{w} \in H_{*}\left(\mathrm{Gr}_{S L_{n}}\right)$.

Each MV-cycle $Z \subset \mathrm{Gr}_{S L_{n}}$ is an effective cycle.
So $[Z] \in H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$ is a nonnegative linear combination of the Schubert classes $\sigma_{w} \in H_{*}\left(\mathrm{Gr}_{S L_{n}}\right)$.

Sketch proof

$g \in X$ is Schubert positive

Each MV-cycle $Z \subset \operatorname{Gr}_{S L_{n}}$ is an effective cycle.
So $[Z] \in H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$ is a nonnegative linear combination of the Schubert classes $\sigma_{w} \in H_{*}\left(\mathrm{Gr}_{S L_{n}}\right)$.

Sketch proof

$g \in X$ is Schubert positive
$\Longrightarrow g$ acts positively on the "MV-cycle basis" of irreps V_{λ}

Each MV-cycle $Z \subset \operatorname{Gr}_{S L_{n}}$ is an effective cycle.
So $[Z] \in H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$ is a nonnegative linear combination of the Schubert classes $\sigma_{w} \in H_{*}\left(\mathrm{Gr}_{S L_{n}}\right)$.

Sketch proof

$g \in X$ is Schubert positive
$\Longrightarrow g$ acts positively on the "MV-cycle basis" of irreps V_{λ}
$\Longrightarrow g$ is totally nonnegative (Fomin-Zelevinsky).

Each MV-cycle $Z \subset \operatorname{Gr}_{S L_{n}}$ is an effective cycle.
So $[Z] \in H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$ is a nonnegative linear combination of the Schubert classes $\sigma_{w} \in H_{*}\left(\operatorname{Gr}_{S L_{n}}\right)$.

Sketch proof

$g \in X$ is Schubert positive
$\Longrightarrow g$ acts positively on the "MV-cycle basis" of irreps V_{λ}
$\Longrightarrow g$ is totally nonnegative (Fomin-Zelevinsky).

This is consistent with Lusztig's definition of totally nonnegative elements as those that act positively on the canonical basis, and the general philosophy that MV-cycles are a geometric canonical basis.

