Total positivity in combinatorics and representation theory

Thomas Lam

September 28, 2010

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

A real matrix is totally nonnegative (TNN) if every minor is nonnegative.

A real matrix is totally positive (TP) if every minor is positive.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

A real matrix is totally nonnegative (TNN) if every minor is nonnegative.

A real matrix is totally positive (TP) if every minor is positive.

Example

$$M = \left(egin{array}{cc} 1 & 3 \ 1 & 2 \end{array}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

is not TNN.

A real matrix is totally nonnegative (TNN) if every minor is nonnegative.

A real matrix is totally positive (TP) if every minor is positive.

Example

$$M=\left(egin{array}{cc} 1 & 3 \ 1 & 2 \end{array}
ight)$$

is not TNN. But

$$M = \left(\begin{array}{rrrr} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 3 \end{array}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

is TP.

Examples of total nonnegative matrices first arose in analysis. The kernels $K(x, y) = e^{xy}$ and $K(x, y) = e^{-(x-y)^2}$ are totally nonnegative in the sense that the matrix

$$M = (K(x_i, y_j))_{i,j=1}^k$$

is totally nonnegative for every

$$x_1 < x_2 < \dots < x_k$$

$$y_1 < y_2 < \dots < y_k$$

We call these totally positive kernels.

Theorem (Gantmacher and Krein)

A totally positive matrix (or kernel) has positive and simple eigenvalues.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Theorem (Gantmacher and Krein)

A totally positive matrix (or kernel) has positive and simple eigenvalues.

Theorem (Schoenberg, Gantmacher and Krein, Karlin)

Let K(x, y) be a TP kernel and f(y) a function satisfying suitable integrability conditions. Then

$$g(x) = \int_{\mathbb{R}} K(x, y) f(y) dy$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

has no more sign-changes than f(y).

Theorem (Loewner-Whitney)

 $GL_n(\mathbb{R})_{\geq 0}$ is the semigroup generated by the positive diagonal matrices and positive Chevalley generators $e_i(t), f_i(t)$ with $t \geq 0$

Theorem (Loewner-Whitney)

 $GL_n(\mathbb{R})_{\geq 0}$ is the semigroup generated by the positive diagonal matrices and positive Chevalley generators $e_i(t)$, $f_i(t)$ with $t \geq 0$

$$\operatorname{diag}(t_1, t_2, t_3, t_4) = \begin{pmatrix} t_1 & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & t_3 & 0 \\ 0 & 0 & 0 & t_4 \end{pmatrix} \qquad t_1, t_2, t_3, t_4$$

> 0

Theorem (Loewner-Whitney)

 $GL_n(\mathbb{R})_{\geq 0}$ is the semigroup generated by the positive diagonal matrices and positive Chevalley generators $e_i(t)$, $f_i(t)$ with $t \geq 0$

$$\begin{aligned} \operatorname{diag}(t_1, t_2, t_3, t_4) &= \begin{pmatrix} t_1 & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & t_3 & 0 \\ 0 & 0 & 0 & t_4 \end{pmatrix} \qquad t_1, t_2, t_3, t_4 > 0 \\ e_2(t) &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & t & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad f_1(t) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ t & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

A sequence a_0, a_1, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

is TNN (caution: not TP!).

A sequence a_0, a_1, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

is TNN (caution: not TP!).

 $a_i \ge 0$

A sequence a_0, a_1, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

is TNN (caution: not TP!).

$$a_i \geq 0 \qquad a_1^2 - a_0 a_2 \geq 0$$

A sequence a_0, a_1, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

is TNN (caution: not TP!).

$$a_i \ge 0$$
 $a_1^2 - a_0 a_2 \ge 0$ $a_1^3 + a_3 a_0^2 - 2a_0 a_1 a_2 \ge 0$

A sequence a_0, a_1, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

is TNN (caution: not TP!).

$$a_i \ge 0$$
 $a_1^2 - a_0 a_2 \ge 0$ $a_1^3 + a_3 a_0^2 - 2a_0 a_1 a_2 \ge 0....$

・ロト・日本・日本・日本・日本・日本・日本

A sequence a_0, a_1, \cdots of real numbers is a totally positive sequence if the infinite Toeplitz matrix

is TNN (caution: not TP!).

$$a_i \ge 0$$
 $a_1^2 - a_0 a_2 \ge 0$ $a_1^3 + a_3 a_0^2 - 2a_0 a_1 a_2 \ge 0....$

The formal power series $a(t) = a_0 + a_1t + a_2t^2 + \cdots$ is then called a totally positive function. Totally positive functions form a semigroup. Fact: If a(t) is totally positive, then it is automatically a meromorphic function, holomorphic in a neighborhood of 0.

Fact: If a(t) is totally positive, then it is automatically a meromorphic function, holomorphic in a neighborhood of 0.

Theorem

Every normalized $(a_0 = a_1 = 1)$ totally positive sequence has generating function of the form

$$a(t) = e^{\gamma t} \prod_{i=1}^{\infty} \frac{1 + \alpha_i t}{1 - \beta_i t}$$

where $\alpha_1 \ge \alpha_2 \ge \cdots \ge 0$, $\beta_1 \ge \beta_2 \ge \cdots \ge 0$, $\gamma \ge 0$, and $\gamma + \sum_i (\alpha_i + \beta_i) = 1$. Conversely, all such sets of parameters give a normalized totally positive function.

Fact: If a(t) is totally positive, then it is automatically a meromorphic function, holomorphic in a neighborhood of 0.

Theorem

Every normalized $(a_0 = a_1 = 1)$ totally positive sequence has generating function of the form

$$a(t) = e^{\gamma t} \prod_{i=1}^{\infty} \frac{1 + \alpha_i t}{1 - \beta_i t}$$

where $\alpha_1 \ge \alpha_2 \ge \cdots \ge 0$, $\beta_1 \ge \beta_2 \ge \cdots \ge 0$, $\gamma \ge 0$, and $\gamma + \sum_i (\alpha_i + \beta_i) = 1$. Conversely, all such sets of parameters give a normalized totally positive function.

The proof of this theorem relies on deep results in complex analysis (Nevanlinna theory).

The following sets are in bijection (homeomorphic):

▲日▼▲□▼▲□▼▲□▼ □ ののの

Normalized totally positive functions.

The following sets are in bijection (homeomorphic):

- Normalized totally positive functions.
- Characters χ of the infinite symmetric group S_{∞} .

The following sets are in bijection (homeomorphic):

- Normalized totally positive functions.
- Characters χ of the infinite symmetric group S_{∞} .
- (Normalized) homomorphisms ϕ : Sym $\rightarrow \mathbb{R}$ such that $\phi(s_{\lambda}) \geq 0$ for each Schur function s_{λ} .

The following sets are in bijection (homeomorphic):

- Normalized totally positive functions.
- Characters χ of the infinite symmetric group S_{∞} .
- (Normalized) homomorphisms ϕ : Sym $\rightarrow \mathbb{R}$ such that $\phi(s_{\lambda}) \geq 0$ for each Schur function s_{λ} .
- Extremal Markov chains on Young's lattice of partitions, such that the probability of a tableau only depends on its shape.

The infinite symmetric group

Infinite symmetric group

The symmetric group S_n permuting *n* elements embeds into S_{n+1} as the subgroup fixing n + 1. The inductive limit S_{∞}

$$S_1 \subset S_2 \subset \cdots \subset S_\infty$$

▲日▼▲□▼▲□▼▲□▼ □ のので

is called the infinite symmetric group.

The infinite symmetric group

Infinite symmetric group

The symmetric group S_n permuting *n* elements embeds into S_{n+1} as the subgroup fixing n + 1. The inductive limit S_{∞}

$$S_1 \subset S_2 \subset \cdots \subset S_\infty$$

is called the infinite symmetric group.

A character χ of S_{∞} is a function $\chi: S_{\infty} \to \mathbb{C}$ that is central, positive definite, normalized, and extremal.

Infinite symmetric group

The symmetric group S_n permuting *n* elements embeds into S_{n+1} as the subgroup fixing n + 1. The inductive limit S_{∞}

$$S_1 \subset S_2 \subset \cdots \subset S_\infty$$

is called the infinite symmetric group.

A character χ of S_{∞} is a function $\chi: S_{\infty} \to \mathbb{C}$ that is central, positive definite, normalized, and extremal.

Under the correspondence (Thoma)

{totally positive functions} \leftrightarrow {characters of S_{∞} }

one has (Okounkov)

poles and zeroes $\{\alpha_i, \beta_i\} \leftrightarrow$ atoms of particular spectral measure

Partitions

A partition λ of n is a sequence

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge 0)$$

of nonnegative integers, such that $\lambda_1 + \lambda_2 + \cdots = n$.

A partition λ of n is a sequence

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge 0)$$

of nonnegative integers, such that $\lambda_1 + \lambda_2 + \cdots = n$.

Example

(4,3,1,1) is a partition of 9.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

A partition λ of n is a sequence

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge 0)$$

of nonnegative integers, such that $\lambda_1 + \lambda_2 + \cdots = n$.

Example (4, 3, 1, 1) is a partition of 9.

We have

irreps of
$$S_n \xleftarrow{1:1}$$
 partitions of n

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Symmetric functions

Sym denotes the ring of formal power series of bounded degree in the variables x_1, x_2, \ldots , invariant under action of S_{∞} on the indices. There is an isomorphism (Frobenius character)

$$\operatorname{Sym} = \operatorname{Sym}_{\mathbb{R}} \cong \oplus_{n \geq 0} \operatorname{Rep}(\operatorname{S}_n) \otimes \mathbb{R}$$

where

irrep labeled by $\lambda \leftrightarrow$ Schur function $s_{\lambda}(x_1, x_2, \ldots)$.

Symmetric functions

Sym denotes the ring of formal power series of bounded degree in the variables x_1, x_2, \ldots , invariant under action of S_{∞} on the indices. There is an isomorphism (Frobenius character)

$$\mathrm{Sym} = \mathrm{Sym}_{\mathbb{R}} \cong \oplus_{n \geq 0} \mathrm{Rep}(\mathrm{S}_n) \otimes \mathbb{R}$$

where

irrep labeled by $\lambda \leftrightarrow$ Schur function $s_{\lambda}(x_1, x_2, \ldots)$.

A character $\chi: S_{\infty} \to \mathbb{C}$ gives rise to a homomorphism $\phi: Sym \to \mathbb{R}$, where

$$\phi(s_{\lambda}) = \text{coefficient of } \chi_{\lambda} \text{ in } \chi|_{S_n}$$

Symmetric functions

Sym denotes the ring of formal power series of bounded degree in the variables x_1, x_2, \ldots , invariant under action of S_{∞} on the indices. There is an isomorphism (Frobenius character)

$$\mathrm{Sym} = \mathrm{Sym}_{\mathbb{R}} \cong \oplus_{n \geq 0} \mathrm{Rep}(\mathrm{S}_n) \otimes \mathbb{R}$$

where

irrep labeled by $\lambda \leftrightarrow$ Schur function $s_{\lambda}(x_1, x_2, \ldots)$.

A character $\chi: S_{\infty} \to \mathbb{C}$ gives rise to a homomorphism $\phi: Sym \to \mathbb{R}$, where

$$\phi(s_{\lambda}) = \text{coefficient of } \chi_{\lambda} \text{ in } \chi|_{S_n}$$

and

poles and zeroes $\{\alpha_i, \beta_i\} \leftrightarrow$ what to specialize the variables x_1, x_2, \ldots

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Random partitions

Markov chains $X_0, X_1 \dots$ on this graph, such that X_i is a partition of *i*.

Random partitions

Markov chains $X_0, X_1 \dots$ on this graph, such that

- X_i is a partition of *i*.
- the probability $p(\lambda^{(n)}) := \mathbb{P}(X_0 = \lambda^{(0)}, X_1 = \lambda^{(1)}, \dots, X_n = \lambda^{(n)})$ only depends on $\lambda^{(n)}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random partitions

Markov chains $X_0, X_1 \dots$ on this graph, such that

- X_i is a partition of *i*.
- the probability $p(\lambda^{(n)}) := \mathbb{P}(X_0 = \lambda^{(0)}, X_1 = \lambda^{(1)}, \dots, X_n = \lambda^{(n)})$ only depends on $\lambda^{(n)}$
- the probability function p(λ) is not a nonnegative linear combination of similar probability functions

are in bijection with normalized TP-functions.

Random partitions

Markov chains $X_0, X_1 \dots$ on this graph, such that

- X_i is a partition of *i*.
- the probability $p(\lambda^{(n)}) := \mathbb{P}(X_0 = \lambda^{(0)}, X_1 = \lambda^{(1)}, \dots, X_n = \lambda^{(n)})$ only depends on $\lambda^{(n)}$
- the probability function p(λ) is not a nonnegative linear combination of similar probability functions

are in bijection with normalized TP-functions. Under this correspondence

$$p(\lambda) = \phi(s_{\lambda})$$

and (Kerov-Vershik)

poles and zeroes $\{\alpha_i, \beta_i\} \leftrightarrow$ scaled lengths of *i*-th rows and columns

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Block-Toeplitz:

Finite:

$$\left(\begin{array}{ccccccccc} 1 & a_0 & a_1 & a_2 & a_3 \\ 0 & 1 & a_0 & a_1 & a_2 \\ 0 & 0 & 1 & a_0 & a_1 \\ 0 & 0 & 0 & 1 & a_0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)?$$

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

Consider the formal loop group $GL_n(\mathbb{R}((t)))$ consisting of (invertible) $n \times n$ matrices, whose entries are formal Laurent series. To each such matrix X(t) we can associate an infinite periodic (block-Toeplitz) matrix A(X):

$$\begin{pmatrix} 1+t^2 & 2+5t \\ -1-t & -4t^2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & 0 & 5 & 1 & 0 & 0 & 0 & \dots \\ \dots & -1 & 0 & 0 & -4 & 0 & 0 & \dots \\ \dots & 1 & 2 & 0 & 5 & 1 & 0 & \dots \\ \dots & -1 & 0 & -1 & 0 & 0 & -4 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider the formal loop group $GL_n(\mathbb{R}((t)))$ consisting of (invertible) $n \times n$ matrices, whose entries are formal Laurent series. To each such matrix X(t) we can associate an infinite periodic (block-Toeplitz) matrix A(X):

$$\begin{pmatrix} 1+t^2 & 2+5t \\ -1-t & -4t^2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & 0 & 5 & 1 & 0 & 0 & 0 & \dots \\ \dots & -1 & 0 & 0 & -4 & 0 & 0 & \dots \\ \dots & 1 & 2 & 0 & 5 & 1 & 0 & \dots \\ \dots & -1 & 0 & -1 & 0 & 0 & -4 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

A matrix $X(t) \in GL_n(\mathbb{R}((t)))$ is TNN if A(X) is.

Consider the formal loop group $GL_n(\mathbb{R}((t)))$ consisting of (invertible) $n \times n$ matrices, whose entries are formal Laurent series. To each such matrix X(t) we can associate an infinite periodic (block-Toeplitz) matrix A(X):

$$\begin{pmatrix} 1+t^2 & 2+5t \\ -1-t & -4t^2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & 0 & 5 & 1 & 0 & 0 & 0 & \dots \\ \dots & -1 & 0 & 0 & -4 & 0 & 0 & \dots \\ \dots & 1 & 2 & 0 & 5 & 1 & 0 & \dots \\ \dots & -1 & 0 & -1 & 0 & 0 & -4 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

A matrix $X(t) \in GL_n(\mathbb{R}((t)))$ is TNN if A(X) is. Note that A(X(t)Y(t)) = A(X)A(Y).

The case where X = X(0) corresponds to $GL_n(\mathbb{R})_{\geq 0}$. The case n = 1 corresponds to totally positive functions.

The case where X = X(0) corresponds to $GL_n(\mathbb{R})_{\geq 0}$. The case n = 1 corresponds to totally positive functions.

Like for totally positive functions, a matrix $X(t) \in GL_n(\mathbb{R}((t)))_{\geq 0}$ is automatically meromorphic (every matrix entry is a meromorphic function).

The case where X = X(0) corresponds to $GL_n(\mathbb{R})_{\geq 0}$. The case n = 1 corresponds to totally positive functions.

Like for totally positive functions, a matrix $X(t) \in GL_n(\mathbb{R}((t)))_{\geq 0}$ is automatically meromorphic (every matrix entry is a meromorphic function).

Which matrices play the role of poles and zeroes for $GL_n(\mathbb{R}((t)))$?

Whirls and curls

Whirls $M(\beta_i^{(1)}, \ldots, \beta_i^{(n)})$, and curls $N(\alpha_i^{(1)}, \ldots, \alpha_i^{(n)})$, depending on *n* (positive) parameters. Let n = 2.

$$M(a,b) = \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & 1 & a & 0 & 0 & \cdots \\ \cdots & 0 & 1 & b & 0 & \cdots \\ \cdots & 0 & 0 & 1 & a & \cdots \\ \cdots & 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \end{pmatrix}$$
$$N(a,b) = \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & 1 & a & ab & a^{2}b & \cdots \\ \cdots & 0 & 1 & b & ab & \cdots \\ \cdots & 0 & 1 & b & ab & \cdots \\ \cdots & 0 & 0 & 1 & a & \cdots \\ \cdots & 0 & 0 & 1 & a & \cdots \\ \cdots & 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

For n = 1, $M(\alpha)$ and $N(\beta)$ are exactly $(1 + \alpha t)$ and $1/(1 - \beta t)$.

For n = 1, $M(\alpha)$ and $N(\beta)$ are exactly $(1 + \alpha t)$ and $1/(1 - \beta t)$. Unlike the factors $(1 + \alpha t)$ and $(1 + \beta t)$, two whirls $M(\alpha_1, \ldots, \alpha_n)$ and $M(\beta_1, \ldots, \beta_n)$ do not always commute, but satisfy a commutation relation involving a rational transformation of the parameters. For n = 1, $M(\alpha)$ and $N(\beta)$ are exactly $(1 + \alpha t)$ and $1/(1 - \beta t)$. Unlike the factors $(1 + \alpha t)$ and $(1 + \beta t)$, two whirls $M(\alpha_1, \ldots, \alpha_n)$ and $M(\beta_1, \ldots, \beta_n)$ do not always commute, but satisfy a commutation relation involving a rational transformation of the parameters.

Theorem (L.-Pylyavskyy)

The transformation $(\alpha, \beta) \mapsto (\alpha', \beta')$, where $M(\alpha)M(\beta) = M(\alpha')M(\beta')$ is the "birational R-matrix" for the symmetric power representation of $U_q(\hat{\mathfrak{sl}}_n)$.

The *R*-matrix $R: V \otimes W \cong W \otimes V$ interchanges factors in tensor products of representations of quantum groups.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (L.-Pylyavskyy)

Every upper triangular $X \in GL_n(\mathbb{R}((t)))$ can be factorized as

$$\prod_{i=1}^{\infty} N(\alpha_i^{(1)}, \dots, \alpha_i^{(n)}) \exp(Y(t)) \prod_{i=-\infty}^{-1} M(\beta_i^{(1)}, \dots, \beta_i^{(n)})$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

for suitable positive parameters, where Y(t) is entire.

Furthermore, the three factors are unique.

Theorem (L.-Pylyavskyy)

Every upper triangular $X \in GL_n(\mathbb{R}((t)))$ can be factorized as

$$\prod_{i=1}^{\infty} N(\alpha_i^{(1)}, \ldots, \alpha_i^{(n)}) \exp(Y(t)) \prod_{i=-\infty}^{-1} M(\beta_i^{(1)}, \ldots, \beta_i^{(n)})$$

for suitable positive parameters, where Y(t) is entire.

Furthermore, the three factors are unique.

There is a ring $\rm LSym$ with a distinguished spanning set, called Loop symmetric functions, such that

TNN points of loop group $\stackrel{1:1}{\longleftrightarrow}$ positive homomorphisms of LSym

Infinite products of Chevalley generators

What's going on in the $\exp(Y(t))$ part?

Infinite products of Chevalley generators

What's going on in the $\exp(Y(t))$ part?

This part of $GL_n(\mathbb{R}((t)))_{\geq 0}$ contains elements of the form

$$X = e_{i_1}(t_1)e_{i_2}(t_2)e_{i_3}(t_3)\cdots$$

where $\{e_i(t) \mid i \in \mathbb{Z}/n\mathbb{Z}\}$ are the (affine) Chevalley generators.

$$n = 3$$

$$e_1(a) = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad e_2(a) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} \quad e_0(a) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ at & 0 & 1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Infinite products of Chevalley generators

What's going on in the $\exp(Y(t))$ part?

This part of $GL_n(\mathbb{R}((t)))_{\geq 0}$ contains elements of the form

$$X = e_{i_1}(t_1)e_{i_2}(t_2)e_{i_3}(t_3)\cdots$$

where $\{e_i(t) \mid i \in \mathbb{Z}/n\mathbb{Z}\}\$ are the (affine) Chevalley generators. Very often these can also be written as

$$X = e_{j_1}(t_1')e_{j_2}(t_2')e_{j_3}(t_3')\cdots$$

This leads to a notion of braid limits inside Coxeter groups.

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

 $s_0 s_1 s_0 = s_1 s_0 s_1$ $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

1012012012012...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

1012012012012····

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

0102012012012····

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

0102012012012...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

0120212012012...

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

0120212012012...

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

0120121012012...

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

0120121012012...

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

0120120102012...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

$$s_0 s_1 s_0 = s_1 s_0 s_1$$
 $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

0120120102012...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

 $s_0 s_1 s_0 = s_1 s_0 s_1$ $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

 $1012012012012 \cdots \longrightarrow 01201201201 \cdots$

A D M 4 目 M 4 日 M 4 1 H 4

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

 $s_0 s_1 s_0 = s_1 s_0 s_1$ $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

 $1012012012012 \cdots \longrightarrow 01201201201 \cdots$

A D M 4 目 M 4 日 M 4 1 H 4

You can't go back!!!

Take n = 3, and the affine symmetric group with simple generators s_0, s_1, s_2 satisfying

$$s_0^2 = s_1^2 = s_2^2 = 1$$

 $s_0 s_1 s_0 = s_1 s_0 s_1$ $s_1 s_2 s_1 = s_2 s_1 s_2$ $s_0 s_2 s_0 = s_2 s_0 s_2$

Let's apply braid moves to

 $1012012012012 \cdots \longrightarrow 01201201201 \cdots$

You can't go back!!!

Theorem (L.-Pylyavskyy)

Can always end up at an infinite power of a Coxeter element. For n = 3: $(012)^{\infty}$, $(120)^{\infty}$, $(201)^{\infty}$, $(210)^{\infty}$, $(102)^{\infty}$, $(021)^{\infty}$

What about finite totally nonnegative matrices of the form

$$M = \begin{pmatrix} 1 & a_0 & a_1 & a_2 & a_3 \\ 0 & 1 & a_0 & a_1 & a_2 \\ 0 & 0 & 1 & a_0 & a_1 \\ 0 & 0 & 0 & 1 & a_0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}?$$

What about finite totally nonnegative matrices of the form

$$M = \begin{pmatrix} 1 & a_0 & a_1 & a_2 & a_3 \\ 0 & 1 & a_0 & a_1 & a_2 \\ 0 & 0 & 1 & a_0 & a_1 \\ 0 & 0 & 0 & 1 & a_0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}?$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

This problem was studied by Rietsch.

Consider all finite Toeplitz matrices form with complex entries, which is an algebraic variety X isomorphic to \mathbb{C}^{n-1} .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Consider all finite Toeplitz matrices form with complex entries, which is an algebraic variety X isomorphic to \mathbb{C}^{n-1} .

Theorem (Ginzburg, Peterson)

We have a canonical isomorphism

 $\mathcal{O}(X) \simeq H_*(\mathrm{Gr}_{SL_n}, \mathbb{C})$

between the ring of functions $\mathcal{O}(X)$ and the homology of the affine Grassmannian $\operatorname{Gr}_{SL_n} = SL_n(\mathbb{C}((t)))/SL_n(\mathbb{C}[[t]]).$

Affine Grassmannian

1 The space Gr_{*SL_n*} is an ind-scheme, with distinguished subvarieties called Schubert varieties.

Affine Grassmannian

- **1** The space Gr_{*SL_n*} is an ind-scheme, with distinguished subvarieties called Schubert varieties.
- 2 The space Gr_{SLn} is weak homotopy-equivalent to the based loop space

$$\Omega SU(n) = \{f: S^1 \to SU(n) \mid f(1) = 1\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

giving $H_*(Gr_{SL_n})$ a ring structure.

Affine Grassmannian

- **1** The space Gr_{SLn} is an ind-scheme, with distinguished subvarieties called Schubert varieties.
- 2 The space Gr_{SLn} is weak homotopy-equivalent to the based loop space

$$\Omega SU(n) = \{f: S^1 \to SU(n) \mid f(1) = 1\}$$

giving $H_*(Gr_{SL_n})$ a ring structure.

3 The ring $H_*(\operatorname{Gr}_{SL_n})$ contains a distinguished basis $\{\sigma_w\}$ called the Schubert basis:

$$H_*(\mathrm{Gr}_{SL_n}) = \oplus_w \mathbb{C} \cdot \sigma_w$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem (Rietsch, translated via the next theorem)

 $M \in X(\mathbb{R})$ is "totally positive" $\Leftrightarrow \sigma_w(M) > 0$ for all w.

Theorem (Rietsch, translated via the next theorem)

 $M \in X(\mathbb{R})$ is "totally positive" $\Leftrightarrow \sigma_w(M) > 0$ for all w.

Rietsch's result is originally stated in terms of the quantum cohomology $QH^*(GL_n/B)$ of the flag variety replacing $H_*(\operatorname{Gr}_{SL_n})$.

Theorem (Peterson; L.-Shimozono)

 $QH^*(GL_n/B)$ and $H_*(Gr_{SL_n})$ (together with their Schubert bases) can be identified after localization.

Theorem (Rietsch, translated via the next theorem)

 $M \in X(\mathbb{R})$ is "totally positive" $\Leftrightarrow \sigma_w(M) > 0$ for all w.

Rietsch's result is originally stated in terms of the quantum cohomology $QH^*(GL_n/B)$ of the flag variety replacing $H_*(\operatorname{Gr}_{SL_n})$.

Theorem (Peterson; L.-Shimozono)

 $QH^*(GL_n/B)$ and $H_*(Gr_{SL_n})$ (together with their Schubert bases) can be identified after localization.

There is also a "parametrization" result which is of a flavor different to the Edrei-Thoma theorem.

k-Schur functions and cores

Theorem (L.)

The following sets are in bijection:

• The totally nonnegative finite Toeplitz matrices.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem (L.)

The following sets are in bijection:

- The totally nonnegative finite Toeplitz matrices.
- Homomorphisms $\phi : \mathbb{Z}[h_1, h_2, ..., h_{n-1}] \to \mathbb{R}$ such that $\phi(s_{\lambda}^{(k)}) \ge 0$ for each k-Schur function $s_{\lambda}^{(k)}$.

 $\mathbb{Z}[h_1, h_2, \dots, h_{n-1}] \subset \text{Sym}$ is generated by the first n-1 homogeneous symmetric functions.

 $s_{\lambda}^{(k)}$ is the k-Schur function of Lapointe-Lascoux-Morse (with k = n - 1, and t = 1) occurring in the study of Macdonald polynomials.

Theorem (L.)

There is an isomorphism $H_*(\operatorname{Gr}_{SL_n}) \cong \mathbb{Z}[h_1, h_2, \dots, h_{n-1}]$ sending Schubert classes to k-Schur functions.

Theorem (L.)

The following sets are in bijection:

- The totally nonnegative finite Toeplitz matrices.
- Homomorphisms $\phi : \mathbb{Z}[h_1, h_2, ..., h_{n-1}] \to \mathbb{R}$ such that $\phi(s_{\lambda}^{(k)}) \ge 0$ for each k-Schur function $s_{\lambda}^{(k)}$.
- Extremal Markov chains on the graph of n-cores, such that the probability of a tableau only depends on its shape.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In Young's lattice, boxes are added one at a time. In the graph of *n*-cores, many boxes can be added at the same step.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

In Young's lattice, boxes are added one at a time. In the graph of *n*-cores, many boxes can be added at the same step.

・ロト ・ 雪 ト ・ ヨ ト

3

For n = 3

Why should Schubert positivity have anything to do with total positivity?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Why should Schubert positivity have anything to do with total positivity?

Write $G = SL_n(\mathbb{C})$.

Geometric Satake Correspondence (Ginzburg, Lusztig, Mirkovic-Vilonen)

Cat. of G([[t]])-equivariant perverse sheaves on $\operatorname{Gr}_{\mathcal{G}} \cong \operatorname{Rep}(\mathcal{G}^{\vee})$

Why should Schubert positivity have anything to do with total positivity?

Write $G = SL_n(\mathbb{C})$.

Geometric Satake Correspondence (Ginzburg, Lusztig, Mirkovic-Vilonen)

Cat. of G([[t]])-equivariant perverse sheaves on $\operatorname{Gr}_{\mathcal{G}} \cong \operatorname{Rep}(\mathcal{G}^{\vee})$

$$H^*(IC_\lambda) \leftrightarrow V_\lambda$$

where IC_{λ} is an intersection homology sheaf, and V_{λ} is a highest-weight representation.

Why should Schubert positivity have anything to do with total positivity?

Write $G = SL_n(\mathbb{C})$.

Geometric Satake Correspondence (Ginzburg, Lusztig, Mirkovic-Vilonen)

Cat. of G([[t]])-equivariant perverse sheaves on $\operatorname{Gr}_{\mathcal{G}} \cong \operatorname{Rep}(\mathcal{G}^{\vee})$

$$H^*(IC_\lambda) \leftrightarrow V_\lambda$$

where IC_{λ} is an intersection homology sheaf, and V_{λ} is a highest-weight representation.

 $\mathsf{MV}\text{-cycles} \subset \mathrm{Gr}_{\mathcal{G}} \leftrightarrow \mathsf{weight} \mathsf{ vectors} \mathsf{ in irreps of } \mathcal{G}^{\vee}$

Schubert implies total

Each MV-cycle $Z \subset \operatorname{Gr}_{SL_n}$ is an effective cycle.

Each MV-cycle $Z \subset \operatorname{Gr}_{SL_n}$ is an effective cycle.

So $[Z] \in H_*(\operatorname{Gr}_{SL_n})$ is a nonnegative linear combination of the Schubert classes $\sigma_w \in H_*(\operatorname{Gr}_{SL_n})$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sketch proof

 $g \in X$ is Schubert positive

Sketch proof

- $g \in X$ is Schubert positive
- \implies g acts positively on the "MV-cycle basis" of irreps V_{\lambda}

▲日▼▲□▼▲□▼▲□▼ □ ののの

Sketch proof

- $g \in X$ is Schubert positive
- \implies g acts positively on the "MV-cycle basis" of irreps V_{\lambda}

▲日▼▲□▼▲□▼▲□▼ □ ののの

 \implies g is totally nonnegative (Fomin-Zelevinsky).

Sketch proof

 $g \in X$ is Schubert positive

- \implies g acts positively on the "MV-cycle basis" of irreps V_{\lambda}
- \implies g is totally nonnegative (Fomin-Zelevinsky).

This is consistent with Lusztig's definition of totally nonnegative elements as those that act positively on the canonical basis, and the general philosophy that MV-cycles are a geometric canonical basis.