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Total positivity

A real matrix is totally nonnegative (TNN) if every minor is
nonnegative.
A real matrix is totally positive (TP) if every minor is positive.

Example

M =

(

1 3
1 2

)

is not TNN.
But

M =





1 2 1
2 5 3
1 3 3





is TP.



Totally positive kernels

Examples of total nonnegative matrices first arose in analysis.
The kernels K (x , y) = exy and K (x , y) = e−(x−y)2 are totally
nonnegative in the sense that the matrix

M = (K (xi , yj))
k
i ,j=1

is totally nonnegative for every

x1 < x2 < · · · < xk

y1 < y2 < · · · < yk

We call these totally positive kernels.
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Theorem (Gantmacher and Krein)

A totally positive matrix (or kernel) has positive and simple
eigenvalues.
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Theorem (Gantmacher and Krein)

A totally positive matrix (or kernel) has positive and simple
eigenvalues.

Theorem (Schoenberg, Gantmacher and Krein, Karlin)

Let K (x , y) be a TP kernel and f (y) a function satisfying suitable
integrability conditions. Then

g(x) =

∫

R

K (x , y)f (y)dy

has no more sign-changes than f (y).
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GLn(R)≥0 is the semigroup generated by the positive diagonal
matrices and positive Chevalley generators ei (t), fi (t) with t ≥ 0
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Total positivity in GLn(R)

Theorem (Loewner-Whitney)

GLn(R)≥0 is the semigroup generated by the positive diagonal
matrices and positive Chevalley generators ei (t), fi (t) with t ≥ 0

diag(t1, t2, t3, t4) =









t1 0 0 0
0 t2 0 0
0 0 t3 0
0 0 0 t4









t1, t2, t3, t4 > 0

e2(t) =









1 0 0 0
0 1 t 0
0 0 1 0
0 0 0 1









f1(t) =









1 0 0 0
t 1 0 0
0 0 1 0
0 0 0 1











Totally positive functions

A sequence a0, a1, · · · of real numbers is a totally positive sequence
if the infinite Toeplitz matrix


















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. . .
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...
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Totally positive functions

A sequence a0, a1, · · · of real numbers is a totally positive sequence
if the infinite Toeplitz matrix





















. . .
...

...
...

...
· · · a0 a1 a2 a3 · · ·
· · · 0 a0 a1 a2 · · ·
· · · 0 0 a0 a1 · · ·
· · · 0 0 0 a0 · · ·

...
...

...
...

. . .





















is TNN (caution: not TP!).

ai ≥ 0 a21 − a0a2 ≥ 0 a31 + a3a
2
0 − 2a0a1a2 ≥ 0....

The formal power series a(t) = a0 + a1t + a2t
2 + · · · is then called

a totally positive function. Totally positive functions form a
semigroup.
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Fact: If a(t) is totally positive, then it is automatically a
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Theorem

Every normalized (a0 = a1 = 1) totally positive sequence has
generating function of the form

a(t) = eγt
∞
∏

i=1

1 + αi t

1− βi t

where α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0, γ ≥ 0, and
γ +

∑

i (αi + βi ) = 1. Conversely, all such sets of parameters give
a normalized totally positive function.



Edrei-Thoma theorem

Fact: If a(t) is totally positive, then it is automatically a
meromorphic function, holomorphic in a neighborhood of 0.

Theorem

Every normalized (a0 = a1 = 1) totally positive sequence has
generating function of the form

a(t) = eγt
∞
∏

i=1

1 + αi t

1− βi t

where α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0, γ ≥ 0, and
γ +

∑

i (αi + βi ) = 1. Conversely, all such sets of parameters give
a normalized totally positive function.

The proof of this theorem relies on deep results in complex analysis
(Nevanlinna theory).
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Theorem (Thoma, Kerov-Vershik)

The following sets are in bijection (homeomorphic):

Normalized totally positive functions.
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Totally positive functions parametrize many things

Theorem (Thoma, Kerov-Vershik)

The following sets are in bijection (homeomorphic):

Normalized totally positive functions.

Characters χ of the infinite symmetric group S∞.

(Normalized) homomorphisms φ : Sym→ R such that
φ(sλ) ≥ 0 for each Schur function sλ.

Extremal Markov chains on Young’s lattice of partitions, such
that the probability of a tableau only depends on its shape.
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as the subgroup fixing n+ 1. The inductive limit S∞

S1 ⊂ S2 ⊂ · · · ⊂ S∞

is called the infinite symmetric group.
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The infinite symmetric group

Infinite symmetric group

The symmetric group Sn permuting n elements embeds into Sn+1

as the subgroup fixing n+ 1. The inductive limit S∞

S1 ⊂ S2 ⊂ · · · ⊂ S∞

is called the infinite symmetric group.

A character χ of S∞ is a function χ : S∞ → C that is central,
positive definite, normalized, and extremal.

Under the correspondence (Thoma)

{totally positive functions} ↔ {characters of S∞}

one has (Okounkov)

poles and zeroes {αi , βi} ↔ atoms of particular spectral measure
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Partitions

A partition λ of n is a sequence

λ = (λ1 ≥ λ2 ≥ · · · ≥ 0)

of nonnegative integers, such that λ1 + λ2 + · · · = n.

Example

(4, 3, 1, 1) is a partition of 9.

We have
irreps of Sn

1:1
←→ partitions of n



Symmetric functions

Sym denotes the ring of formal power series of bounded degree in
the variables x1, x2, . . ., invariant under action of S∞ on the indices.
There is an isomorphism (Frobenius character)

Sym = SymR
∼= ⊕n≥0Rep(Sn)⊗ R

where

irrep labeled by λ↔ Schur function sλ(x1, x2, . . .).
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Symmetric functions

Sym denotes the ring of formal power series of bounded degree in
the variables x1, x2, . . ., invariant under action of S∞ on the indices.
There is an isomorphism (Frobenius character)

Sym = SymR
∼= ⊕n≥0Rep(Sn)⊗ R

where

irrep labeled by λ↔ Schur function sλ(x1, x2, . . .).

A character χ : S∞ → C gives rise to a homomorphism
φ : Sym→ R, where

φ(sλ) = coefficient of χλ in χ|Sn

and

poles and zeroes {αi , βi} ↔ what to specialize the variables x1, x2, . . .



Young’s graph

Young’s graph arises from containment of partitions:

∅
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Xi is a partition of i .
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Random partitions

Markov chains X0,X1 . . . on this graph, such that

Xi is a partition of i .

the probability
p(λ(n)) := P(X0 = λ(0),X1 = λ(1), . . . ,Xn = λ(n)) only
depends on λ(n)

the probability function p(λ) is not a nonnegative linear
combination of similar probability functions

are in bijection with normalized TP-functions.
Under this correspondence

p(λ) = φ(sλ)

and (Kerov-Vershik)

poles and zeroes {αi , βi} ↔ scaled lengths of i -th rows and columns



Two variations

Block-Toeplitz:





















. . .
...

...
...

...
· · · a0 a1 a2 a3 · · ·
· · · 0 b0 b1 b2 · · ·
· · · 0 0 a0 a1 · · ·
· · · 0 0 0 b0 · · ·

...
...

...
...

. . .





















?

Finite:












1 a0 a1 a2 a3
0 1 a0 a1 a2
0 0 1 a0 a1
0 0 0 1 a0
0 0 0 0 1













?



Total positivity for loop groups (with Pavlo Pylyavskyy)

Consider the formal loop group GLn(R((t))) consisting of
(invertible) n× n matrices, whose entries are formal Laurent series.
To each such matrix X (t) we can associate an infinite periodic
(block-Toeplitz) matrix A(X ):

(

1 + t2 2 + 5t
−1− t −4t2

)

 





















...
...

...
...

...
...

. . . 0 5 1 0 0 0 . . .
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...
...

...
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










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Consider the formal loop group GLn(R((t))) consisting of
(invertible) n× n matrices, whose entries are formal Laurent series.
To each such matrix X (t) we can associate an infinite periodic
(block-Toeplitz) matrix A(X ):

(

1 + t2 2 + 5t
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)
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
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




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...
...

...
...

...
...

. . . 0 5 1 0 0 0 . . .

. . . −1 0 0 −4 0 0 . . .

. . . 1 2 0 5 1 0 . . .

. . . −1 0 −1 0 0 −4 . . .
...

...
...

...
...

...





















A matrix X (t) ∈ GLn(R((t))) is TNN if A(X ) is.
Note that A(X (t)Y (t)) = A(X )A(Y ).
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Whirls and curls

So the study of totally positive functions fits into the framework of
infinite-dimensional Lie groups. Lusztig previously extended total
positivity to real reductive groups.

The case where X = X (0) corresponds to GLn(R)≥0. The case
n = 1 corresponds to totally positive functions.

Like for totally positive functions, a matrix X (t) ∈ GLn(R((t)))≥0

is automatically meromorphic (every matrix entry is a meromorphic
function).

Which matrices play the role of poles and zeroes for GLn(R((t)))?



Whirls and curls

Whirls M(β
(1)
i , . . . , β

(n)
i ), and curls N(α

(1)
i , . . . , α

(n)
i ), depending

on n (positive) parameters.
Let n = 2.

M(a, b) =





















. . .
...

...
...

...
· · · 1 a 0 0 · · ·
· · · 0 1 b 0 · · ·
· · · 0 0 1 a · · ·
· · · 0 0 0 1 · · ·

...
...

...
...

. . .





















N(a, b) =





















. . .
...

...
...

...
· · · 1 a ab a2b · · ·
· · · 0 1 b ab · · ·
· · · 0 0 1 a · · ·
· · · 0 0 0 1 · · ·

...
...

...
...

. . .




















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parameters.



Whirls and curls

For n = 1, M(α) and N(β) are exactly (1 + αt) and 1/(1 − βt).

Unlike the factors (1 +αt) and (1 + βt), two whirls M(α1, . . . , αn)
and M(β1, . . . , βn) do not always commute, but satisfy a
commutation relation involving a rational transformation of the
parameters.

Theorem (L.-Pylyavskyy)

The transformation (α, β) 7→ (α′, β′), where
M(α)M(β) = M(α′)M(β′) is the “birational R-matrix” for the
symmetric power representation of Uq(ŝln).

The R-matrix R : V ⊗W ∼= W ⊗ V interchanges factors in tensor
products of representations of quantum groups.



Factorization theorem for loop groups

Theorem (L.-Pylyavskyy)

Every upper triangular X ∈ GLn(R((t))) can be factorized as

∞
∏

i=1

N(α
(1)
i , . . . , α

(n)
i ) exp(Y (t))

−1
∏

i=−∞

M(β
(1)
i , . . . , β

(n)
i )

for suitable positive parameters, where Y (t) is entire.

Furthermore, the three factors are unique.



Factorization theorem for loop groups

Theorem (L.-Pylyavskyy)

Every upper triangular X ∈ GLn(R((t))) can be factorized as

∞
∏

i=1

N(α
(1)
i , . . . , α

(n)
i ) exp(Y (t))

−1
∏

i=−∞

M(β
(1)
i , . . . , β

(n)
i )

for suitable positive parameters, where Y (t) is entire.

Furthermore, the three factors are unique.

There is a ring LSym with a distinguished spanning set, called
Loop symmetric functions, such that

TNN points of loop group
1:1
←→ positive homomorphisms of LSym
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Infinite products of Chevalley generators

What’s going on in the exp(Y (t)) part?

This part of GLn(R((t)))≥0 contains elements of the form

X = ei1(t1)ei2(t2)ei3(t3) · · ·

where {ei (t) | i ∈ Z/nZ} are the (affine) Chevalley generators.

n = 3

e1(a) =





1 a 0
0 1 0
0 0 1



 e2(a) =





1 0 0
0 1 a
0 0 1



 e0(a) =





1 0 0
0 1 0
at 0 1







Infinite products of Chevalley generators

What’s going on in the exp(Y (t)) part?

This part of GLn(R((t)))≥0 contains elements of the form

X = ei1(t1)ei2(t2)ei3(t3) · · ·

where {ei (t) | i ∈ Z/nZ} are the (affine) Chevalley generators.

Very often these can also be written as

X = ej1(t
′
1)ej2(t

′
2)ej3(t

′
3) · · ·

This leads to a notion of braid limits inside Coxeter groups.
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Take n = 3, and the affine symmetric group with simple generators
s0, s1, s2 satisfying

s20 = s21 = s22 = 1

s0s1s0 = s1s0s1 s1s2s1 = s2s1s2 s0s2s0 = s2s0s2



Example of braid limit
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Example of braid limit

Take n = 3, and the affine symmetric group with simple generators
s0, s1, s2 satisfying

s20 = s21 = s22 = 1

s0s1s0 = s1s0s1 s1s2s1 = s2s1s2 s0s2s0 = s2s0s2

Let’s apply braid moves to

1012012012012 · · · −→ 01201201201 · · ·

You can’t go back!!!

Theorem (L.-Pylyavskyy)

Can always end up at an infinite power of a Coxeter element. For
n = 3: (012)∞, (120)∞, (201)∞, (210)∞, (102)∞, (021)∞
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0 0 0 1 a0
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
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





?

This problem was studied by Rietsch.
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Consider all finite Toeplitz matrices form with complex entries,
which is an algebraic variety X isomorphic to C

n−1.

Theorem (Ginzburg, Peterson)

We have a canonical isomorphism

O(X ) ' H∗(GrSLn ,C)

between the ring of functions O(X ) and the homology of the affine
Grassmannian GrSLn = SLn(C((t)))/SLn(C[[t]]).
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Affine Grassmannian

1 The space GrSLn is an ind-scheme, with distinguished
subvarieties called Schubert varieties.

2 The space GrSLn is weak homotopy-equivalent to the based
loop space

ΩSU(n) = {f : S1 → SU(n) | f (1) = 1}

giving H∗(GrSLn) a ring structure.

3 The ring H∗(GrSLn) contains a distinguished basis {σw} called
the Schubert basis:

H∗(GrSLn) = ⊕wC · σw
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Schubert positivity

Theorem (Rietsch, translated via the next theorem)

M ∈ X (R) is “totally positive” ⇔ σw (M) > 0 for all w.

Rietsch’s result is originally stated in terms of the quantum
cohomology QH∗(GLn/B) of the flag variety replacing H∗(GrSLn).

Theorem (Peterson; L.-Shimozono)

QH∗(GLn/B) and H∗(GrSLn) (together with their Schubert bases)
can be identified after localization.

There is also a “parametrization” result which is of a flavor
different to the Edrei-Thoma theorem.
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k-Schur functions and cores

Theorem (L.)

The following sets are in bijection:

The totally nonnegative finite Toeplitz matrices.

Homomorphisms φ : Z[h1, h2, . . . , hn−1]→ R such that

φ(s
(k)
λ ) ≥ 0 for each k-Schur function s

(k)
λ .

Z[h1, h2, . . . , hn−1] ⊂ Sym is generated by the first n − 1
homogeneous symmetric functions.

s
(k)
λ is the k-Schur function of Lapointe-Lascoux-Morse (with
k = n − 1, and t = 1) occurring in the study of Macdonald
polynomials.

Theorem (L.)

There is an isomorphism H∗(GrSLn )
∼= Z[h1, h2, . . . , hn−1] sending

Schubert classes to k-Schur functions.



k-Schur functions and cores

Theorem (L.)

The following sets are in bijection:

The totally nonnegative finite Toeplitz matrices.

Homomorphisms φ : Z[h1, h2, . . . , hn−1]→ R such that

φ(s
(k)
λ ) ≥ 0 for each k-Schur function s

(k)
λ .

Extremal Markov chains on the graph of n-cores, such that
the probability of a tableau only depends on its shape.
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The graph of n-cores

In Young’s lattice, boxes are added one at a time. In the graph of
n-cores, many boxes can be added at the same step.

For n = 3

∅
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Schubert vs. total positivity via Geometric Satake

Why should Schubert positivity have anything to do with total
positivity?

Write G = SLn(C).

Geometric Satake Correspondence (Ginzburg, Lusztig,
Mirkovic-Vilonen)

Cat. of G ([[t]])-equivariant perverse sheaves on GrG ∼= Rep(G∨)

H∗(ICλ)↔ Vλ

where ICλ is an intersection homology sheaf, and Vλ is a
highest-weight representation.

MV-cycles ⊂ GrG ↔ weight vectors in irreps of G∨
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Schubert implies total

Each MV-cycle Z ⊂ GrSLn is an effective cycle.

So [Z ] ∈ H∗(GrSLn) is a nonnegative linear combination of the
Schubert classes σw ∈ H∗(GrSLn).

Sketch proof

g ∈ X is Schubert positive
=⇒ g acts positively on the “MV-cycle basis” of irreps Vλ

=⇒ g is totally nonnegative (Fomin-Zelevinsky).

This is consistent with Lusztig’s definition of totally nonnegative
elements as those that act positively on the canonical basis, and
the general philosophy that MV-cycles are a geometric canonical
basis.
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