Total positivity, crystals, and Whittaker functions

Thomas Lam
University of Michigan

November 2014

A real matrix is totally nonnegative (TNN) if every minor is nonnegative.
A real matrix is totally positive (TP) if every minor is positive.
Example

$$
M=\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)
$$

is not TNN.
But

$$
M=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 3 \\
1 & 3 & 3
\end{array}\right)
$$

is $T P$.
$G L_{n}(\mathbb{R})_{\geq 0}=$ TNN part of $G L_{n}$

Theorem (Loewner-Whitney)

$G L_{n}(\mathbb{R})_{\geq 0}$ is the semigroup generated by $T_{>0}$ and positive Chevalley generators $x_{i}(a), y_{i}(a)$ with $a \geq 0$

$$
\operatorname{diag}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\left[\begin{array}{cccc}
t_{1} & 0 & 0 & 0 \\
0 & t_{2} & 0 & 0 \\
0 & 0 & t_{3} & 0 \\
0 & 0 & 0 & t_{4}
\end{array}\right] \quad t_{1}, t_{2}, t_{3}, t_{4}>0
$$

$$
x_{2}(a)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & a & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad y_{1}(a)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
a & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Thus totally positive matrices can be row reduced via positive adjacent row operations.

$G=$ complex simple algebraic group $\quad S L(n)$

(split over \mathbb{R})
$B, B_{-}=$opposite Borels
$U, U_{-}=$unipotent subgroups

$$
T=B \cap B_{-} \text {torus }
$$

$\left[\begin{array}{lll}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right]$$\left[\begin{array}{lll}* & 0 & 0 \\ * & * & 0 \\ * & * & *\end{array}\right]$

$$
\left[\begin{array}{ccc}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right]
$$

$I=$ vertex set of Dynkin diagram
$x_{i}: \mathbb{C} \rightarrow U, i \in I$ one parameter subgp
$y_{i}: \mathbb{C} \rightarrow U_{-}, i \in I$ one parameter subgp

Definition (Totally nonnegative part of G)

$G_{\geq 0}$ is the semigroup generated by $T_{>0}$ and $x_{i}(a), y_{i}(a)$ for $a>0$.

$$
T_{>0}=\left\langle\nu(a) \mid a \in \mathbb{R}_{>0}\right\rangle \subset T
$$

as ν ranges over cocharacters $\nu: \mathbb{C}^{*} \rightarrow T$

$$
\begin{gathered}
x_{1}(t)=\left[\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad x_{2}(t)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right] \\
x_{1}(a) x_{2}(b) x_{1}(c)=x_{2}(b c /(a+c)) x_{1}(a+c) x_{2}(a b /(a+c))
\end{gathered}
$$

gives a subtraction-free birational transformation of tori $\left(\mathbb{C}^{*}\right)^{3} \rightarrow\left(\mathbb{C}^{*}\right)^{3}$

$$
(a, b, c) \longmapsto(b c /(a+c), a+c, a b /(a+c))
$$

Similar positive birational transformations play an important role for example in

- Fomin and Zelevinsky's cluster algebras
- Fock and Goncharov's coordinates for Teichmuller spaces

■ Berenstein and Kazhdan's geometric crystals

$$
\begin{gathered}
x_{1}(t)=\left[\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad x_{2}(t)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right] \\
x_{1}(a) x_{2}(b) x_{1}(c)=x_{2}(b c /(a+c)) x_{1}(a+c) x_{2}(a b /(a+c))
\end{gathered}
$$

gives a subtraction-free birational transformation of tori $\left(\mathbb{C}^{*}\right)^{3} \rightarrow\left(\mathbb{C}^{*}\right)^{3}$

$$
(a, b, c) \longmapsto(b c /(a+c), a+c, a b /(a+c))
$$

Subtraction-free rational formulae can be tropicalized by

$$
+\longmapsto \min , \quad \times \longmapsto+, \quad \div \longmapsto-
$$

giving a map of lattices $\mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$
$(A, B, C) \longmapsto(B+C-\min (A, C), \min (A, C), A+B-\min (A, C))$
Occurs in parametrizations of canonical bases. Industry of lifting piecewise-linear formulae to subtraction-free rational formulae.

Kashiwara's crystal graphs are combinatorial models for highest weight representations of a semisimple complex Lie algebra \mathfrak{g}.

$$
\mathfrak{g}=\operatorname{Lie} G
$$

$V(\lambda)=$ finite dimensional irrep with highest weight λ $B(\lambda)=$ Kashiwara's crystal graph

Kashiwara's crystal graphs

weight function wt : $B(\lambda) \rightarrow \mathbb{Z}^{r}$
Example: $B(2,1)$ for 8 -dim adjoint representation V of $\mathfrak{s l}_{3}$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 2 & 2 & 1 \\
\hline 2 & & & 1 & \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array} & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 2|\quad 2| \\
& \begin{array}{|l|l|l|l|l|}
\hline 1 & 3 & & 1 & \begin{array}{|l|l}
2 & 3 \\
\hline 3 & \\
\hline 3 & \\
\hline
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Berenstein and Kazhdan defined geometric crystals, extending the work of Berenstein and Kirillov, and Berenstein and Zelevinsky.

Definition

A geometric crystal is a tuple $\left(X, \gamma, \mathcal{F}, e_{i}, \varepsilon_{i}, \varphi_{i}\right)$, where X is an irreducible variety over \mathbb{C}, equipped with

■ a rational map $\gamma: X \rightarrow T$, called the weight;

- a rational function $\mathcal{F}: X \rightarrow \mathbb{C}$, called the decoration;
- rational actions $e_{i}: \mathbb{C}^{*} \times X \rightarrow X$ for $i \in I$ that we won't discuss;
- rational functions ε_{i} and φ_{i} for $i \in I$ that we won't discuss. satisfying a list of axioms.

The geometric crystal with highest weight t

Fix
$w_{0} \in G$ rep. of longest element in Weyl group $\quad w_{0}=\left[\begin{array}{lll} & & 1 \\ & -1 & \\ 1 & & \end{array}\right]$
$\chi: U \rightarrow \mathbb{C}$ nondegenerate character

$$
\chi\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]=a+c
$$

Definition

For $t \in T$, the geometric crystal with highest weight t is

$$
X_{t}:=B_{-} \cap U t w_{0} U
$$

where

- $\gamma(x)=x \bmod U_{-} \in B_{-} / U_{-} \simeq T$
- $\mathcal{F}\left(u_{1} t w_{0} u_{2}\right)=\chi\left(u_{1}\right)+\chi\left(u_{2}\right)$
$U \subset G L_{3}$ is parametrized birationally by the map

$$
(a, b, c) \in\left(\mathbb{C}^{\times}\right)^{3} \longmapsto\left[\begin{array}{ccc}
1 & b & b c \\
& 1 & a+c \\
& & 1
\end{array}\right]=x_{2}(a) x_{1}(b) x_{2}(c)=: u_{1}
$$

Let

$$
t=\left[\begin{array}{lll}
t_{1} & & \\
& t_{2} & \\
& & t_{3}
\end{array}\right] \quad w_{0}=\left[\begin{array}{lll}
& & 1 \\
& -1 & \\
1 & &
\end{array}\right]
$$

Then X_{t} is parametrized by $(a, b, c) \longmapsto$
$x=\left[\begin{array}{ccc}b c t_{3} & & \\ (a+c) t_{3} & a t_{2} / c & \\ t_{3} & t_{2} / c & t_{1} / a b\end{array}\right]=u_{1} t w_{0}\left[\begin{array}{ccc}1 & t_{2} / c t_{3} & t_{1} / a b t_{3} \\ & 1 & (a+c) t_{1} / a b t_{2} \\ & & 1\end{array}\right]$

We read off that

$$
\gamma(x)=\left[\begin{array}{ccc}
b c t_{3} & 0 & 0 \\
0 & \frac{a t_{2}}{c} & 0 \\
0 & 0 & \frac{t_{1}}{a b}
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathcal{F}(x) & =(a+c)+b+\frac{t_{2}}{c t_{3}}+\frac{(a+c) t_{1}}{a b t_{2}} \\
& =a+b+c+\frac{t_{2}}{c t_{3}}+\frac{t_{1}}{b t_{2}}+\frac{c t_{1}}{a b t_{2}}
\end{aligned}
$$

using the $\chi: U \rightarrow \mathbb{C}$ from before.

$$
\begin{aligned}
\mathbb{C}^{*} & \longmapsto \mathbb{Z} \\
T & \longmapsto \text { lattice of characters } \\
+\longmapsto \min , \quad \times & \longmapsto+, \quad \div \longmapsto- \\
(a, b, c) & \longmapsto(A, B, C) \\
\left(t_{1}, t_{2}, t_{3}\right) & \longmapsto\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)
\end{aligned}
$$

Theorem (Berenstein-Kazhdan)

$$
X_{t} \text { tropicalizes to } B(\lambda)
$$

In particular, there is a bijection

$$
\begin{aligned}
\left\{(A, B, C) \in \mathbb{Z}^{3} \mid \operatorname{trop} \mathcal{F} \geq 0\right\} & \longrightarrow B(\lambda) \\
\operatorname{trop} \gamma & \longmapsto \mathrm{wt}
\end{aligned}
$$

Tropicalizing, the condition $\operatorname{trop}(\mathcal{F}) \geq 0$ becomes $\min \left(A, B, C, \lambda_{2}-C-\lambda_{3}, \lambda_{1}-B-\lambda_{2}, C+\lambda_{1}-A-B-\lambda_{2}\right) \geq 0$ which can be arranged into a Gelfand-Tsetlin pattern

Tropicalizing, the condition $\operatorname{trop}(\mathcal{F}) \geq 0$ becomes $\min \left(A, B, C, \lambda_{2}-C-\lambda_{3}, \lambda_{1}-B-\lambda_{2}, C+\lambda_{1}-A-B-\lambda_{2}\right) \geq 0$ which can be arranged into a Gelfand-Tsetlin pattern

$$
\begin{aligned}
& \lambda_{1} \\
& \lambda_{2} \\
& \lambda_{3} \\
& \lambda \lambda_{1}-B^{7} \\
& \lambda_{1}-A-B
\end{aligned}
$$

Tropicalizing, the condition $\operatorname{trop}(\mathcal{F}) \geq 0$ becomes $\min \left(A, B, C, \lambda_{2}-C-\lambda_{3}, \lambda_{1}-B-\lambda_{2}, C+\lambda_{1}-A-B-\lambda_{2}\right) \geq 0$ which can be arranged into a Gelfand-Tsetlin pattern

$$
\begin{aligned}
& \lambda_{1} \quad \lambda_{2} \quad \lambda_{3}
\end{aligned}
$$

Tropicalizing, the condition $\operatorname{trop}(\mathcal{F}) \geq 0$ becomes $\min \left(A, B, C, \lambda_{2}-C-\lambda_{3}, \lambda_{1}-B-\lambda_{2}, C+\lambda_{1}-A-B-\lambda_{2}\right) \geq 0$ which can be arranged into a Gelfand-Tsetlin pattern

$$
\begin{aligned}
& \lambda_{1} \quad \lambda_{2} \quad \lambda_{3}
\end{aligned}
$$

Also it is easy to check that

$$
\begin{aligned}
\operatorname{trop} \gamma_{3}(A, B, C) & =\# \text { ones } \\
\operatorname{trop} \gamma_{2}(A, B, C) & =\# \text { twos } \\
\operatorname{trop} \gamma_{1}(A, B, C) & =\# \text { threes }
\end{aligned}
$$

The character χ_{V} of V is the generating function of all elements in the crystal graph of V. (For $G=G L_{n}$, this is a Schur polynomial, e.g. $x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+2 x_{1} x_{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}$.)

$$
\chi_{v(\lambda)}=\sum_{b \in B(\lambda)} x^{\mathrm{wt}(b)}
$$

Question

What is the character of a geometric crystal?

$G(\mathbb{R})$ split real group

$K \subset G(\mathbb{R})$ maximal compact subgroup
$U(\mathbb{R})$ real points of unipotent

Jacquet's Whittaker functions for real groups

A Whittaker function is a smooth function $\psi \in C^{\infty}(G(\mathbb{R}) / K)$ which

1 transforms as $\psi(u z)=\chi(u) \psi(z)$ for $u \in U(\mathbb{R})$;
$\boxed{2}$ is an eigenfunction for the left-invariant differential operators on $G(\mathbb{R}) / K$.

Kostant's Whittaker functions

The quantum Toda lattice is a quantum integrable system, that is, a system of commuting differential operators, on T with quantum Hamiltonian

$$
H=\frac{1}{2} \Delta-\chi_{i} \sum_{i \in I} \alpha_{i}(t)
$$

where $\alpha_{i}: T \rightarrow \mathbb{C}^{*}$ are the simple roots of G, and $\chi_{i} \in \mathbb{C}$ depends on $\chi: U \rightarrow \mathbb{C}$. (Can take $\chi_{i}=1$.)

Kostant's Whittaker functions

A Whittaker function is a smooth function $\psi(t) \in C^{\infty}(T)$ or $\psi(t) \in C^{\infty}(T(\mathbb{R}))$ that is an eigenfunction of the quantum Toda lattice.

Same as Jacquet's version, via quantum Hamiltonian reduction.

Let

$$
\omega_{t}=\frac{d a_{1}}{a_{1}} \wedge \frac{d a_{2}}{a_{2}} \wedge \cdots \wedge \frac{d a_{r}}{a_{r}}
$$

be the canonical form on X_{t}, where $\left(a_{1}, \ldots, a_{r}\right) \in\left(\mathbb{C}^{*}\right)^{r} \rightarrow X_{t}$ is a positive parametrization.

Theorem (L., similar statement by Chhaibi)

Let $\lambda: T \rightarrow \mathbb{C}^{*}$ be a character of T. The integral function

$$
\psi_{\lambda}(t)=\int_{\left(X_{t}\right) \geq 0 \subset X_{t}} \lambda(\gamma(x)) e^{-\mathcal{F}(x)} \omega_{t}
$$

is a Whittaker function on $T_{>0}$, with infinitesimal character $\lambda-\rho$.

$$
\int_{\left(X_{t}\right) \geq 0}=\int_{\mathbb{R}_{>0}^{r}}
$$

■ Givental [1997]: gave this integral formula for $\lambda=1$ and $G=G L_{n}$
■ Joe and Kim [2003]: generalized Givental's work to arbitrary λ
■ Gerasimov, Kharchev, Lebedev, Oblezin [2006] and Gerasimov, Lebedev, Oblezin [2012]: studied these integral formulae, and proved them for classical groups
■ Rietsch [2008]: Conjectured the formula for arbitrary G (without geometric crystals).

- Rietsch [2012]: Proved her conjecture for $\lambda=1$.
- Chhaibi: independently found the same formula and proved that it is an eigenfunction of the quantum Toda Hamiltonian. Probabilistic interpretation following O'Connell's work.

$$
\text { Schur polynomials } s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{T} x^{\operatorname{content}(T)}
$$

are generating functions over Young tableaux with a fixed shape μ.

$$
\text { Irreducible characters } \chi_{\mu}=\sum_{b \in B(\mu)} e^{\text {weight }(b)}
$$

are weight-generating functions over crystals.

$$
\text { Whittaker functions } \psi_{\lambda}(t)=\int_{\left(X_{t}\right) \geq 0 \subset X_{t}} \lambda(\gamma(x)) e^{-\mathcal{F}(x)} \omega_{t}
$$

are integrals over the totally positive part of a geometric crystal. The function $\mathcal{F}(x)$ takes the place of the "semistandard" condition on tableaux.

Birational combinatorics (much inspired by total positivity)

Piecewise - linear functions \longrightarrow Subtraction-free formulae

■ Formulae for Littlewood-Richardson coefficients (Berenstein-Zelevinsky)

- Lascoux-Schützenberger charge, or energy functions (L.-Pylyavskyy)

Combinatorial algorithms \longrightarrow Subtraction-free birational maps

■ Cluster algebra dynamical systems (many authors)

- Geometric RSK (Kirillov, Noumi-Yamada)

■ Birational promotion, rowmotion, ... (Einstein-Propp, Grinberg-Roby)

Formal power series \longrightarrow Formal integrals??
Replace summation over $\left(\mathbb{Z}_{\geq 0}\right)^{\ell}$ by formal integral over $\mathbb{R}_{>0}^{\ell}$.

Non－archimedean case $=q$－analogue

Replacing $G(\mathbb{R})$ by $G\left(\mathbb{Q}_{p}\right)$ ，we obtain the Casselman－Shalika formula，which relates the non－Archimedean Whittaker function with the Weyl character formula．Many recent generalizations e．g． to metaplectic groups．

Mirror symmetry for flag varieties

In the setting of Givental and Rietsch＇s mirror conjecture，our theorem says that $X_{t}=$ mirror family to G^{\vee} / B^{\vee} via a theorem of B．Kim．

Directed polymers

O＇Connell showed that the law of the partition function of a Brownian directed polymer model could be described in terms of Whittaker functions for $G L_{n}$ ．
The Whittaker measure is an analogue of the Schur measure on partitions（Corwin，O＇Connell，Seppäläinen，Zygouras）．

