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Total positivity

A real matrix is totally nonnegative (TNN) if every minor is
nonnegative.
A real matrix is totally positive (TP) if every minor is positive.

Example

M =

(
1 3
1 2

)
is not TNN.
But

M =

 1 2 1
2 5 3
1 3 3


is TP.



Totally nonnegative part of GLn(R)

GLn(R)≥0 = TNN part of GLn

Theorem (Loewner-Whitney)

GLn(R)≥0 is the semigroup generated by T>0 and positive
Chevalley generators xi (a), yi (a) with a ≥ 0

diag(t1, t2, t3, t4) =


t1 0 0 0
0 t2 0 0
0 0 t3 0
0 0 0 t4

 t1, t2, t3, t4 > 0

x2(a) =


1 0 0 0
0 1 a 0
0 0 1 0
0 0 0 1

 y1(a) =


1 0 0 0
a 1 0 0
0 0 1 0
0 0 0 1


Thus totally positive matrices can be row reduced via positive
adjacent row operations.



Some notation

G = complex simple algebraic group SL(n)

(split over R)

B,B− = opposite Borels

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 ∗ 0 0
∗ ∗ 0
∗ ∗ ∗


U,U− = unipotent subgroups

1 ∗ ∗
0 1 ∗
0 0 1

 1 0 0
∗ 1 0
∗ ∗ 1


T = B ∩ B− torus

∗ 0 0
0 ∗ 0
0 0 ∗


I = vertex set of Dynkin diagram {1, 2, . . . , n − 1}

xi : C→ U, i ∈ I one parameter subgp

yi : C→ U−, i ∈ I one parameter subgp



Lusztig’s generalization

Definition (Totally nonnegative part of G )

G≥0 is the semigroup generated by T>0 and xi (a), yi (a) for a > 0.

T>0 = 〈ν(a) | a ∈ R>0〉 ⊂ T

as ν ranges over cocharacters ν : C∗ → T



Relations for semigroup generators

x1(t) =

1 t 0
0 1 0
0 0 1

 x2(t) =

1 0 0
0 1 t
0 0 1


x1(a)x2(b)x1(c) = x2(bc/(a + c))x1(a + c)x2(ab/(a + c))

gives a subtraction-free birational transformation of tori (C∗)3 → (C∗)3

(a, b, c) 7−→ (bc/(a + c), a + c , ab/(a + c))

Similar positive birational transformations play an important role for
example in

Fomin and Zelevinsky’s cluster algebras

Fock and Goncharov’s coordinates for Teichmuller spaces

Berenstein and Kazhdan’s geometric crystals



Relations for semigroup generators

x1(t) =

1 t 0
0 1 0
0 0 1

 x2(t) =

1 0 0
0 1 t
0 0 1


x1(a)x2(b)x1(c) = x2(bc/(a + c))x1(a + c)x2(ab/(a + c))

gives a subtraction-free birational transformation of tori (C∗)3 → (C∗)3

(a, b, c) 7−→ (bc/(a + c), a + c , ab/(a + c))

Subtraction-free rational formulae can be tropicalized by

+ 7−→ min, × 7−→ +, ÷ 7−→ −

giving a map of lattices Z3 → Z3

(A,B,C ) 7−→ (B + C −min(A,C ),min(A,C ),A + B −min(A,C ))

Occurs in parametrizations of canonical bases. Industry of lifting
piecewise-linear formulae to subtraction-free rational formulae.



Kashiwara’s crystal graphs

Kashiwara’s crystal graphs are combinatorial models for highest
weight representations of a semisimple complex Lie algebra g.

g = Lie G

V (λ) = finite dimensional irrep with highest weight λ

B(λ) = Kashiwara’s crystal graph



Kashiwara’s crystal graphs

weight function wt : B(λ)→ Zr

Example: B(2, 1) for 8-dim adjoint representation V of sl3
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Crystalization vs. tropicalization

Uq(g) rep Vq(λ) crystal graph B(λ)

geometric crystal Xt

crystalization q → 0

tropicalization??



Geometric crystals

Berenstein and Kazhdan defined geometric crystals, extending the
work of Berenstein and Kirillov, and Berenstein and Zelevinsky.

Definition

A geometric crystal is a tuple (X , γ,F , ei , εi , ϕi ), where X is an
irreducible variety over C, equipped with

a rational map γ : X → T , called the weight;

a rational function F : X → C, called the decoration;

rational actions ei : C∗ × X → X for i ∈ I that we won’t
discuss;

rational functions εi and ϕi for i ∈ I that we won’t discuss.

satisfying a list of axioms.



The geometric crystal with highest weight t

Fix

w0 ∈ G rep. of longest element in Weyl group w0 =

 1
−1

1


χ : U → C nondegenerate character χ

1 a b
0 1 c
0 0 1

 = a + c

Definition

For t ∈ T , the geometric crystal with highest weight t is

Xt := B− ∩ U t w0 U

where

γ(x) = x mod U− ∈ B−/U− ' T

F(u1t w0u2) = χ(u1) + χ(u2)



Example for G = GL3

U ⊂ GL3 is parametrized birationally by the map

(a, b, c) ∈ (C×)3 7−→

1 b bc
1 a + c

1

 = x2(a)x1(b)x2(c) =: u1.

Let

t =

t1
t2

t3

 w0 =

 1
−1

1


Then Xt is parametrized by (a, b, c) 7−→

x =

 bct3
(a + c)t3 at2/c

t3 t2/c t1/ab

 = u1tw0

1 t2/ct3 t1/abt3
1 (a + c)t1/abt2

1





γ and F

We read off that

γ(x) =


bct3 0 0

0
at2
c

0

0 0
t1
ab


and

F(x) = (a + c) + b +
t2
ct3

+
(a + c)t1

abt2

= a + b + c +
t2
ct3

+
t1

bt2
+

ct1
abt2

using the χ : U → C from before.



Berenstein and Kazhdan’s theorem

C∗ 7−→ Z
T 7−→ lattice of characters

+ 7−→ min, × 7−→ +, ÷ 7−→ −
(a, b, c) 7−→ (A,B,C )

(t1, t2, t3) 7−→ (λ1, λ2, λ3)

Theorem (Berenstein-Kazhdan)

Xt tropicalizes to B(λ).

In particular, there is a bijection

{(A,B,C ) ∈ Z3 | tropF ≥ 0} −→ B(λ)

tropγ 7−→ wt



Gelfand-Tsetlin patterns

Tropicalizing, the condition trop(F) ≥ 0 becomes

min(A,B,C , λ2 − C − λ3, λ1 − B − λ2,C + λ1 − A− B − λ2) ≥ 0

which can be arranged into a Gelfand-Tsetlin pattern

λ1 λ2 λ3
≥ ≥ ≥ ≥

λ1 − B λ2 − C
≥ ≥

λ1 − A− B

1 1 1 2 3
2 2 3 3
3

7−→
5 4 1
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Gelfand-Tsetlin patterns

Tropicalizing, the condition trop(F) ≥ 0 becomes

min(A,B,C , λ2 − C − λ3, λ1 − B − λ2,C + λ1 − A− B − λ2) ≥ 0

which can be arranged into a Gelfand-Tsetlin pattern

λ1 λ2 λ3
≥ ≥ ≥ ≥

λ1 − B λ2 − C
≥ ≥

λ1 − A− B

1 1 1 2 3
2 2 3 3
3

7−→
5 4 1

4 2



Gelfand-Tsetlin patterns

Tropicalizing, the condition trop(F) ≥ 0 becomes

min(A,B,C , λ2 − C − λ3, λ1 − B − λ2,C + λ1 − A− B − λ2) ≥ 0

which can be arranged into a Gelfand-Tsetlin pattern

λ1 λ2 λ3
≥ ≥ ≥ ≥

λ1 − B λ2 − C
≥ ≥

λ1 − A− B

1 1 1 2 3
2 2 3 3
3

7−→
5 4 1

4 2
3



What is the geometric character?

Also it is easy to check that

tropγ3(A,B,C ) = #ones

tropγ2(A,B,C ) = #twos

tropγ1(A,B,C ) = #threes

The character χV of V is the generating function of all elements in
the crystal graph of V . (For G = GLn, this is a Schur polynomial,
e.g. x2

1x2 + x2
1x3 + 2x1x2x3 + x1x2

2 + x1x2
3 + x2

2x3 + x2x2
3 .)

χV (λ) =
∑

b∈B(λ)

xwt(b)

Question

What is the character of a geometric crystal?



Jacquet’s Whittaker functions

G (R) split real group
K ⊂ G (R) maximal compact subgroup

U(R) real points of unipotent

Jacquet’s Whittaker functions for real groups

A Whittaker function is a smooth function ψ ∈ C∞(G (R)/K )
which

1 transforms as ψ(uz) = χ(u)ψ(z) for u ∈ U(R);

2 is an eigenfunction for the left-invariant differential operators
on G (R)/K .



Kostant’s Whittaker functions

The quantum Toda lattice is a quantum integrable system, that is,
a system of commuting differential operators, on T with quantum
Hamiltonian

H =
1

2
∆− χi

∑
i∈I

αi (t)

where αi : T → C∗ are the simple roots of G , and χi ∈ C depends
on χ : U → C. (Can take χi = 1.)

Kostant’s Whittaker functions

A Whittaker function is a smooth function ψ(t) ∈ C∞(T ) or
ψ(t) ∈ C∞(T (R)) that is an eigenfunction of the quantum Toda
lattice.

Same as Jacquet’s version, via quantum Hamiltonian reduction.



Integral formula for Whittaker functions

Let

ωt =
da1
a1
∧ da2

a2
∧ · · · ∧ dar

ar

be the canonical form on Xt , where (a1, . . . , ar ) ∈ (C∗)r → Xt is a
positive parametrization.

Theorem (L., similar statement by Chhaibi)

Let λ : T → C∗ be a character of T . The integral function

ψλ(t) =

∫
(Xt)≥0⊂Xt

λ(γ(x))e−F(x)ωt .

is a Whittaker function on T>0, with infinitesimal character λ− ρ.

∫
(Xt)≥0

=

∫
Rr
>0



Whittaker function as integral over geometric crystal

Givental [1997]: gave this integral formula for λ = 1 and
G = GLn

Joe and Kim [2003]: generalized Givental’s work to arbitrary λ

Gerasimov, Kharchev, Lebedev, Oblezin [2006] and
Gerasimov, Lebedev, Oblezin [2012]: studied these integral
formulae, and proved them for classical groups

Rietsch [2008]: Conjectured the formula for arbitrary G
(without geometric crystals).

Rietsch [2012]: Proved her conjecture for λ = 1.

Chhaibi: independently found the same formula and proved
that it is an eigenfunction of the quantum Toda Hamiltonian.
Probabilistic interpretation following O’Connell’s work.



Whittaker functions as geometric characters

Schur polynomials sµ(x1, x2, . . . , xn) =
∑
T

xcontent(T )

are generating functions over Young tableaux with a fixed shape µ.

Irreducible characters χµ =
∑

b∈B(µ)

eweight(b)

are weight-generating functions over crystals.

Whittaker functions ψλ(t) =

∫
(Xt)≥0⊂Xt

λ(γ(x))e−F(x)ωt .

are integrals over the totally positive part of a geometric crystal.
The function F(x) takes the place of the “semistandard” condition
on tableaux.



Birational combinatorics (much inspired by total positivity)

Piecewise - linear functions −→ Subtraction-free formulae

Formulae for Littlewood-Richardson coefficients
(Berenstein-Zelevinsky)

Lascoux-Schützenberger charge, or energy functions
(L.-Pylyavskyy)

Combinatorial algorithms −→ Subtraction-free birational maps

Cluster algebra dynamical systems (many authors)

Geometric RSK (Kirillov, Noumi-Yamada)

Birational promotion, rowmotion, ... (Einstein-Propp,
Grinberg-Roby)

Formal power series −→ Formal integrals??

Replace summation over (Z≥0)` by formal integral over R`>0.



Three other directions

Non-archimedean case = q-analogue

Replacing G (R) by G (Qp), we obtain the Casselman-Shalika
formula, which relates the non-Archimedean Whittaker function
with the Weyl character formula. Many recent generalizations e.g.
to metaplectic groups.

Mirror symmetry for flag varieties

In the setting of Givental and Rietsch’s mirror conjecture, our
theorem says that Xt = mirror family to G∨/B∨ via a theorem of
B. Kim.

Directed polymers

O’Connell showed that the law of the partition function of a
Brownian directed polymer model could be described in terms of
Whittaker functions for GLn.
The Whittaker measure is an analogue of the Schur measure on
partitions (Corwin, O’Connell, Seppäläinen, Zygouras).


