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TNN Grassmannian

Take integers 1 ≤ k ≤ n. The Grassmannian Gr(k, n) is the set of
k-dimensional subspaces of Cn.

X =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
ak1 ak2 · · · akn


Definition (Totally nonnegative Grassmannian (Postnikov))

The totally nonnegative Grassmannian Gr(k , n)≥0 is the locus in
the real Grassmannian representable by X such that all k × k
minors (Plücker coordinates) are nonnegative.

Lusztig defined the TNN parts of arbitrary G/P.

Lusztig’s Gr(k , n)≥0 = GL(n)>0 · b

where b = span(e1, e2, . . . , ek) is a particular basepoint. The two
definitions are (not obviously) equivalent.



Amplituhedron

Definition (Arkani-Hamed and Trnka’s amplituhedron)

The amplituhedron A(k , n, d) in Gr(k , d) is the image of
Gr(k , n)≥0 under a (positive) linear map Z : Rn → Rd inducing
ZGr : Gr(k , n)→ Gr(k, d).

ZGr is not defined everywhere in Gr(k , n). If Z is positive, then it is
well-defined on Gr(k , n)≥0.

This is only the “tree” amplituhedron. There is also a “loop”
amplituhedron.



Polytopes to amplituhedra

Gr(1, n)≥0 is a simplex

Gr(1, n)≥0 = {(x1, x2, . . . , xn) 6= 0 | xi ∈ R≥0} modulo scaling

which can be identified with the simplex

∆n−1 := {(a1, a2, . . . , an) | ai ∈ [0, 1] and a1 + a2 + · · ·+ an = 1}.

Polytopes are images of simplices

A convex polytope in Rd with vertices v1, v2, . . . , vn is the image of

∆n−1 ⊂ Rn

under a linear map Z : Rn → Rd where

Z (ei ) = vi .
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Amplituhedron form

Amplituhedron form

The amplituhedron form ω is a meromorphic top form on Gr(k, d)
with logarithmic singularities on the codimension one faces of the
amplituhedron. (The Zariski-closures of such faces are complex
divisors in Gr(k, d).)

There are many meromorphic forms satisfying this condition.

Problem

Give a good “formula” for ω.

But first, why do the physicists care?



N = 4 D = 4 super Yang-Mills

What is this quantum field theory?

N = 4 D = 4 Yang-Mills for us means:

spacetime is M = R4 with the usual Lorentz metric

consider a pure gauge theory with gauge group SU(m)
(classical fields in this theory are connections on a
SU(m)-bundle over M)

add 4 super symmetries (the maximal amount) to this
quantum field theory. The resulting theory has 16 types of
particles.



Amplitudes

The (super)amplitude An is, very roughly speaking, a formula for
the probability of a n-particle experiment. It is traditionally
calculated as

An =
∑

Feynman diagrams

∫
rational function

It is natural to expand

An = Atree
n + A1-loop

n + · · ·

where Atree
n only considers Feynman diagrams without loops.

A trick called color-ordering allows one to write

Atree
n = (group theory factor)Atree

n ,

so that Atree
n has no dependence on the gauge group.
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Tree amplitude as a rational form

In the right coordinates, Atree
n is much simpler than expected

(often just a simple rational function)!

It exhibits surprising symmetries: besides the usual
superconformal symmetry, there is a dual superconformal
symmetry which glue to give a Yangian Y (psu(2, 2|4))
symmetry.

The amplitude Atree
n depends on:

momentum vectors for each of the particles,

“Grassmann variables” that keep track of supersymmetry.

In the amplituhedron setting, this data is stored in:

the (k + 4)× n matrix Z , together with

a point Y ∈ Gr(k , k + 4), which roughly speaking, says which
of the 4 rows give the momenta, and the other k deal with
supersymmetry.

Atree
n = Atree

n (Y ,Z ) = “amplituhedron form” = ωSYM(Y ,Z )
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Amplituhedron form in the polytope case

We have
ZGr : Gr(k , n)→ Gr(k , d)

where d = k + 4 is the physical case. We want to describe a
meromorphic top form ω on Gr(k, d), which depends on Z .

Polytope case

For k = 1, and Z : Pn−1 → Pd−1, we have

ω = L(χP∨)

where

P∨ is the dual polytope to P = Z (∆n−1),

χP∨ is its characteristic function, and

L is the Laplace transform, sending piecewise-linear functions
in Pd−1 to rational functions in Pd−1.

No such simple formula is known for Grassmannians.



Positroid stratification

X =


...

... · · ·
...

v1 v2 · · · vn
...

... · · ·
...


Extend periodically via vi+n = vi , to get

. . . , v−1, v0, v1, v2, v3 . . . ,∈ Ck .

Define fX : Z→ Z by

fX (i) = min{j ≥ i | vi ∈ span(vi+1, vi+2, . . . , vj)}.



Bounded affine permutations

Theorem (Postnikov)

fX is a (k , n) bounded affine permutation:

fX : Z→ Z is a bijection,

fX (i + n) = fX (i) + n,

i ≤ fX (i) ≤ i + n,∑n
i=1(f (i)− i) = kn,

and these are exactly the functions that occur.

For f ∈ Bound(k , n), set

Π̊f := {X ∈ Gr(k, n) | fX = f }

and define the positroid variety

Πf = Π̊f .

These subvarieties form a stratification of Gr(k , n).



Some facts

Π̊f ∩Gr(k , n)≥0 ' Rr
>0, where r = dimC Πf (Postnikov,

Lusztig, Rietsch)

Πf is irreducible, normal, Cohen-Macaulay, and has rational
singularities (Knutson.-L.-Speyer)

Other characterizations:

Πf can be defined (scheme-theoretically) as the intersection of
cyclically rotated Schubert varieties (Postnikov,
Knutson.-L.-Speyer)

Πf are exactly the torus-orbits of symplectic leaves for the
natural Poisson structure on Gr(k , n) (Goodearl-Yakimov)

Πf are exactly the compatibly Frobenius split subvarieties of
the Grassmannian with respect to the natural Frobenius
splitting (Knutson.-L.-Speyer)

Also relations to: cluster algebras, mirror symmetry, KP solitons,
symmetric functions, affine and quantum Schubert calculus,...
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Canonical top form of a positroid variety

Define the boundary

∂Πf =
⋃

g 6=f |Πg⊂Πf

Πg

and the canonical form

ωΠf
:= unique nonzero top form with simple poles along ∂Πf

on Πf .

Can also be defined with a birational parametrization similar to

(a, b, c) 7→ x1(a)x2(b)x1(c) =

 1 a + c ab
0 1 b
0 0 1

 ω =
da

a

db

b

dc

c

from the previous lecture. (Yet another way: use cluster structure.)
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Canonical forms of amplituhedron varieties

Define the amplituhedron variety

Yf := ZGr(Πf )

and its canonical form as a pushforward

ωYf
:= traceZGr

(ωΠf
).

If dim(Yf ) < dim(Πf ), then ωYf
= 0.

If dim(Yf ) = dim(Πf ), then ωYf
is obtained by summing over

finitely many preimages (counting these is a Schubert calculus
problem).

Physicists’ idea

ωSYM is the sum of ωYf
over a triangulation of the amplituhedron.

Expressing the amplitude as a sum over positroid varieties was also
studied earlier by Arkani-Hamed, Bourjaily, Cachazo, Goncharov,
Postnikov, Trnka.



Grassmannian polytopes

Question

How do we describe Yf and ωYf
directly?

The faces of polytopes, and of their triangulations, are all cut out
by linear functions.
This is not true for the amplituhedron varieties; some are cut out
by higher degree polynomials in the Plücker coordinates (the k × k
minors of Gr(k, n)).

Question

What class of functions on the Grassmannian should we replace
linear functions with, to get a good theory of Grassmannian
polytopes?

Possible Idea

Use Lusztig’s canonical bases, or Kashiwara’s global bases.
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Amplituhedron varieties and canonical bases

(Dual) canonical bases elements are distinguished functions
(sections of some line bundle) on the Grassmannian, which are
higher degree, but possess positivity properties generalizing those
of Plücker coordinates. For example, these bases elements are
positive on Gr(k , n)≥0.

I speculate that whereas Πf is cut out by Plücker coordinates, Yf

is cut out by canonical bases elements.

Yf depends on Z , so to make sense of this, one actually works with
a “universal amplituhedron variety” Yf ⊂ Gr(k , d)×Mat(n, d).

For the rest of the talk, I will focus on explaining a simpler relation
between Πf and the dual canonical basis.
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Ideal of positroid variety

R(k , n) =
⊕
m

R(k , n)m = homogeneous coordinate ring of Gr(k , n)

Example

R(2,4) =

C[∆12,∆13,∆14,∆23,∆24,∆34]/(∆13∆24 −∆14∆23 −∆12∆34).

R(2, 4)1 is 6-dimensional spanned by ∆12,∆13,∆14,∆23,∆24,∆34.
R(2, 4)2 is

(6
2

)
+ 6− 1 = 20-dimensional.



Ideal of positroid variety

R(k , n) =
⊕
m

R(k , n)m = homogeneous coordinate ring of Gr(k , n)

As a GL(n)-representation,

R(k , n)m = V (mωk)∗

where V (mωk) is the finite-dimensional irreducible representation,
and ωk is the k-th fundamental weight. Thus V (ωk) ' ΛkCn. In
combinatorial language, mωk is a k ×m rectangle.
The GL(n)-module V (mωk) has a distinguished basis

{G (T ) | T ∈ B(mωk)}

of canonical basis elements (evaluated at q = 1), constructed by
Lusztig (another construction by Kashiwara).



The homogeneous ideal of a positroid variety

I(Πf ) = homogeneous ideal of Πf

C[Πf ] = homogeneous coordinate ring of Πf

Theorem (L.)

Both I(Πf ) and C[Πf ] are spanned by dual canonical basis
elements.

More precisely,

I(Πf )m ⊂ R(k , n)m = V (mωk)∗ is isomorphic to Vf (mωk)⊥

and has a basis given by {G (T )∗ | T /∈ Bf (mωk)}.
C[Πf ]m is spanned by (images of) {G (T )∗ | T ∈ Bf (mωk)}.

Bf (mωk) = cyclic Demazure crystal ⊂ B(mωk)

which indexes a basis of

Vf (mωk) = cyclic Demazure module ⊂ V (mωk),

defined to be the intersection of n cyclically rotated Demazure
submodules of V (mωk).
These constructions seem to be of independent interest.
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The crystal B(mωk)

B(mωk) is the set of semistandard tableaux of shape k ×m, filled
with the numbers 1, 2, . . . , n.

1 1 3 4 4
2 3 4 5 5
4 4 6 6 6

The set B(mωk) has a remarkable combinatorial operation called
promotion, corresponding to the cyclic symmetry of the
Grassmannian.

1 1 3 4 4
2 3 4 5 5
4 4 6 6 6
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The crystal B(mωk)

B(mωk) is the set of semistandard tableaux of shape k ×m, filled
with the numbers 1, 2, . . . , n.

1 1 3 4 4
2 3 4 5 5
4 4 6 6 6

The set B(mωk) has a remarkable combinatorial operation called
promotion, corresponding to the cyclic symmetry of the
Grassmannian.

χ

( 1 1 3 4 4
2 3 4 5 5
4 4 6 6 6

)
=

1 1 1 2 2
3 4 4 5 5
5 5 5 6 6

In fact, B(mωk) is a Kirillov-Reshetikhin crystal. They correspond
to very special finite-dimensional representations of the Yangian.



Demazure submodules

V (mωk) has a highest weight vector v+. We have

v+ = G

( 1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

)

Definition

An extremal weight vector of V (mωk) is a vector vI in the orbit
Sn · v+, where I ⊂ {1, 2, . . . , n} is a k-element subset.

Let b be the Lie algebra of the upper triangular matrices
B ⊂ GL(n), and U(b) be its universal enveloping algebra.

Definition

A Demazure submodule of V (mωk) is VI (mωk) := U(b) · vI .

The Demazure submodule VI (mωk) has its own Demazure crystal
BI (mωk) ⊂ B(mωk), and

VI (mωk) = span(G (T ) | T ∈ BI (mωk)) ⊂ V (mωk).



Cyclic Demazure modules and crystals

Definition

For k ∈ Bound(k, n), the cyclic Demazure module is the
intersection

Vf (mωk) := VI1(mωk) ∩ χ(VI2(mωk)) ∩ · · · ∩ χn−1(VIn(mωk))

where (I1, I2, . . . , In) is the Grassmann-necklace (appropriately
shifted) of f ∈ Bound(k , n). The cyclic Demazure crystal is the
intersection

Bf (mωk) := BI1(mωk) ∩ χ(BI2(mωk)) ∩ · · · ∩ χn−1(BIn(mωk)).

Theorem (L.)

Vf (mωk) has a basis given by {G (T ) | T ∈ Bf (mωk)}.



Geometry vs. representation theory vs. combinatorics

Geometry Representation theory Combinatorics

Grassmannian Highest weight irreducible V (mωk) B(mωk)

Schubert variety Demazure module VI (mωk) BI (mωk)

Positroid variety cyclic Demazure module Vf (mωk) Bf (mωk)

The cyclic symmetry is key for the last line, and isn’t present for
other G/P-s, except (co)minuscule ones where there is an
analogue of promotion.

Higher degree matroids

For m = 1, these crystals are matroids. Namely,

B(ωk) ' uniform matroid

BI (ωk) ' Schubert matroid

Bf (ωk) ' positroid
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