
TILING WITH COMMUTATIVE RINGS

THOMAS LAM

1. A recreational problem

Consider the collection R of squares obtained from the chessboard by re-
moving two opposite corners:

Can it be covered with the vertical and horizontal dominoes

so that every square is covered by exactly one domino? In other words, can R
be tiled by vertical and horizontal dominoes?

The coloring gives the answer to this well-known problem away. The region
R has 32 black squares and 30 white squares. Since each domino covers exactly
one black and one white square, no tiling is possible. The aim of this article is
to explain a way to tackle tiling problems using a little commutative algebra.
More precisely, we will explain how to obtain coloring arguments, similar to
the above chessboard coloring, in a systematic way. I will assume that the
reader is familiar with linear algebra and have seen rings and ideals before.

2. Tiles, regions, and tiling problems

Let N = {0, 1, 2, . . .} denote the natural numbers. A tile or region is a
finite subset of N2 considered as a collection of boxes in the first quadrant1.
The tiling problems that we shall consider are of the following form: given
a (possibly infinite) set T of tiles and a region R, can R be tiled (that is,
covered with tiles so that each square in R is covered once)? Each tile τ ∈ T
can be translated anywhere within N2 and used as many times as desired but
we shall insist that rotations and reflections are not allowed. If we want to

1The interested reader will have no trouble generalizing our statements to higher
dimensions.
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allow rotations of a tile then they must be added to T separately. Because we
may translate tiles as much as we like, we will also assume that each tile τ ∈ T
has been translated as far southwest as possible, so that it touches the x- and
y-axes. Thus in the above chessboard problem, T consists of two elements: the
vertical domino V = {(0, 0), (0, 1)} and horizontal domino H = {(0, 0), (1, 0)}.

3. Coloring arguments

Let T be a set of tiles. A coloring argument for T is a function f : N2 → C
such that

f(κ) :=
∑

(a,b)∈κ

f(a, b) = 0

for any κ ⊂ N2 which is a translate of a tile in T. It is not difficult to check
that the set of coloring arguments for T forms a vector space over C, which
we denote O(T) and shall call the coloring space.

If R ⊂ N2 is some region, then we say that a coloring argument f ∈ O(T)
forbids R if f(R) 6= 0. If a coloring argument f forbids R then one immediately
deduces that R is not tileable by T. If we replace black and white by +1 and
−1 then the chessboard coloring gives the following coloring argument

...
...

...
...

−1 +1 −1 +1 · · ·
+1 −1 +1 −1 · · ·
−1 +1 −1 +1 · · ·
+1 −1 +1 −1 · · ·

(which has formula f(a, b) = (−1)a+b) for the tile set T = {V, H} consisting
of the two dominoes.

4. Tile polynomials

Let us consider the polynomial ring C[x, y] in two variables, where C de-
notes the complex numbers. To each box (a, b) ∈ N2 in the first quadrant we
associate the monomial xayb:

...
...

...
...

y3 xy3 x2y3 x3y3 · · ·

y2 xy2 x2y2 x3y2 · · ·
y xy x2y x3y · · ·

1 x x2 x3 · · ·
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To each region R (or tile τ) we associate the region (or tile) polynomial

pR(x, y) =
∑

(a,b)∈R

xayb ∈ C[x, y].

Thus pV (x, y) = 1 + y and pH(x, y) = 1 + x.
We note that translating a tile τ in the direction (a, b) corresponds to mul-

tiplying the tile polynomial by xayb. Our assumption that the tiles τ ∈ T are
southwest-justified means that each pτ (x, y) is not divisible by a monomial2.

When is a region R tileable by T? This happens exactly when

(1) pR(x, y) =
∑

(a,b),τ

xaybpτ (x, y)

where the summation is over some collection of translated tiles.

5. Tile ideal

Let us define the tile ideal IT ⊂ C[x, y] to be the ideal generated by the tile
polynomials pτ as τ varies over the tiles in T. A typical element of p(x, y) ∈ IT
is thus a finite linear combination

(2) p(x, y) = q1(x, y)pτ1(x, y) + · · ·+ qk(x, y)pτk
(x, y)

where τi ∈ T are tiles and qi(x, y) ∈ C[x, y]. In particular, if a region R is
tileable by T then looking at (1) we see that pR ∈ IT. However, the converse
is not true. The polynomials qi(x, y) in (2) may involve negative signs which
would allow one to “remove” tiles. Let us say that a region R is tileable by
T over C if pR ∈ IT. Tileability over C is a much easier problem, as we shall
soon see.

For example, let R = {(0, 0), (0, 1), (0, 2), (1, 1), (2, 1), (3, 0), (3, 1), (3, 2)}:

It is easy to see that R is not tileable by the dominoes T = {V, H}. However
we have

pR(x, y) = 1 + y + y2 + xy + x2y + x3 + x3y + x3y2

= (1 + y + y2 + x2 + x2y + x2y2 − x− xy2)pH(x, y) ∈ IT

so R is tileable by dominoes over C.

2We can avoid having to make these assumptions by using the ring C[x, y, x−1, y−1] in-
stead, but that makes other things somewhat more complicated.
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6. Reduction to finite sets of tiles

A basic theorem in commutative algebra is the Hilbert Basis Theorem. In
our setting, it states that

Theorem 1 (Hilbert Basis Theorem). Every ideal I in a polynomial ring
C[x1, x2, . . . , xn] is finitely generated. Furthermore, if S ⊂ I is any possibly
infinite set of generators, then a finite subset S′ ⊂ S will generate I.

Corollary 1. Any possibly infinite set T of tiles can be replaced by a finite
subset T′ ⊂ T of tiles, so that tileability by T over C is the same as tileability
by T′ over C.

Proof. Apply Theorem 1 to the tile ideal IT ⊂ C[x, y]. ¤

7. Tiling over C and coloring arguments

Proposition 1. We have an isomorphism of C-vector spaces

O(T) ' HomC(C[x, y]/IT,C).

Proof. Let f ∈ O(T). We define a C-linear map φ : C[x, y] → C by the formula

φ(xayb) = f(a, b)

and extending by linearity. Since f is a coloring argument, the map φ descends
to a well-defined map φ̄ : C[x, y]/IT → C. This defines a C-linear map O(T) →
HomC(C[x, y]/IT,C).

In the other direction, let φ̄ ∈ HomC(C[x, y]/IT,C). We define f : N2 → C
by the formula

f(a, b) = φ̄(xayb mod IT).

This f lies in O(T) and the resulting map HomC(C[x, y]/IT,C) → O(T) is
inverse to the one in the previous paragraph. ¤

It is now time for one of the main results in this article.

Theorem 2. A region R ⊂ N2 is tileable by T over C if and only if no coloring
argument f ∈ O(T) forbids R.

Proof. The “only if” statement is obvious. To prove the “if” direction, we
suppose that R is not tileable by T over C so that pR(x, y) /∈ IT. But this
means the image p̄R(x, y) ∈ C[x, y]/IT is a non-zero vector in the C-vector
space C[x, y]/IT. There is thus a map φ̄ ∈ HomC(C[x, y]/IT,C) such that
φ̄(p̄R) 6= 0. Using the isomorphism of Proposition 1 this gives a coloring
argument f ∈ O(T) such that f(R) 6= 0. ¤

8. Nullstellensatz and varieties

Let I ⊂ C[x, y] be an ideal. We define the variety V (I) of I to be

V (I) = {(α, β) ∈ C2 | p(α, β) = 0 for every p(x, y) ∈ I}.
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If X ⊂ C2 is a set of points in the plane we define the ideal I(X) ⊂ C[x, y] of
X by

I(X) = {p(x, y) ∈ C[x, y] | p(α, β) = 0 for every (α, β) ∈ X}.
(You can obviously make these definitions in dimensions more than two.)

An ideal I in a commutative ring B is called radical if for any b ∈ B such
that bn ∈ I we have b ∈ I. For example, the ideal 〈1 + x, 1 + y〉 ⊂ C[x, y]
that we have previously seen, is radical. A fundamental result in commutative
algebra and algebraic geometry is Hilbert’s Nullstellensatz.

Theorem 3 (Nullstellensatz). Let I ⊂ C[x1, x2, . . . , xn] be an ideal not equal
to the whole polynomial ring. Then V (I) is non-empty. Furthermore, if I is
radical then we have I(V (I)) = I.

9. Tile variety

Theorem 2 is satisfying theoretically but to solve our favorite tiling problems
it would be nice to exhibit an explicit basis for O(T). By Proposition 1, the
dimension of O(T) is equal to that of HomC(C[x, y]/IT,C). If C[x, y]/IT is
infinite-dimensional over C (it will always be of countable dimension), then
HomC(C[x, y]/IT,C) will be of uncountable dimension. As an example, take
T = {V } to consist of only the vertical domino. Then C[x, y]/IT ' C[x] is
infinite-dimensional over C. For simplicity we will assume that C[x, y]/IT and
thus O(T) is a finite-dimensional C-vector space3.

Define the tile variety VT = V (IT) ⊂ C2 to be the variety associated to the
ideal IT. For example, if T = {V, H} then VT is given by the set of common
zeroes of 1+x and 1+ y. Thus VT = {(−1,−1)}. It will follow from Theorem
4 below that if C[x, y]/IT is finite-dimensional over C then VT is a finite set
of points.

For a point (α, β) ∈ VT define a map φ̄α,β ∈ HomC(C[x, y]/IT,C) by evalu-
ating polynomials at (α, β):

φ̄α,β(p(x, y)) = p(α, β).

Note that this is well-defined exactly because (α, β) ∈ VT. These elements
of HomC(C[x, y]/IT,C) are very special: they are not just linear maps, but
also C-algebra homomorphisms of C[x, y]/IT to C. Under the isomorphism of
Proposition 1, φ̄α,β corresponds to the coloring argument f : N2 → C given by
fα,β(a, b) = αa βb.

Perhaps you now see where we are heading. If we take T = {V,H} to consist
of the two dominoes, and (α, β) = (−1,−1) then f−1,−1(a, b) = (−1)a+b is just
the black-white chessboard coloring!

3The description we now give will not lead to a basis for O(T) in the infinite-dimensional
case, but other techniques such as Gröbner bases can still tackle the general case.
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10. A basis for the coloring space

Theorem 4. Suppose C[x, y]/IT has dimension n over C and IT is a radical
ideal. Then VT = {(α1, β1), . . . , (αn, βn)} consists of n points and the set
{fαi,βi

∈ O(T)} forms a basis of the coloring space O(T).

Proof. We claim that an element p̄(x, y) ∈ C[x, y]/IT is completely determined
by its values p̄(αi, βi) on VT. This follows from Theorem 3: if p, q ∈ C[x, y]
take the same values everywhere on VT then the difference p− q lies in I(VT)
and thus in IT by the Nullstellensatz. In particular, we have

dimC(C[x, y]/IT) ≤ |VT|.
But if {(α1, β1), . . . , (αm, βm)} ⊂ VT and j ∈ [1,m] is fixed let us pick for each
i 6= j in [1, m] a polynomial

q
(j)
i (x, y) =

x− αi

αj − αi
or q

(j)
i (x, y) =

y − βi

βj − βi

insisting that we choose an expression such that the denominator is non-zero
(most of the time either one will do). Then the product

q(j)(x, y) =
∏

i6=j

q
(j)
i (x, y) ∈ C[x, y]

takes the value 1 at (αj , βj) and the value 0 at every other (αi, βi). These m
polynomials give m linearly independent elements of C[x, y]/IT. Thus

dimC(C[x, y]/IT) ≥ |VT|
and we conclude that n = dimC(C[x, y]/IT) = |VT|. In particular, we have
shown that VT = {(α1, β1), . . . , (αn, βn)} is finite. Finally, one checks that
the maps {φ̄αi,βi

} ⊂ HomC(C[x, y]/IT,C) form a dual-basis to {q(j)(x, y)} ⊂
C[x, y]/IT, completing the proof. ¤

For T = {V, H}, we have remarked that IT is radical so Theorem 4 says
that the chessboard coloring is essentially the only coloring argument. There
is also a version of Theorem 4 which applies even when IT is not radical.

11. Summary of strategy

Let us summarize our approach to a tiling problem. We are given a set T
of tiles and a region R. First, we convert each tile τ ∈ T into a polynomial
pτ (x, y). We (try to) solve all these polynomials simultaneously, to find the
tile variety VT ⊂ C2. If VT = ∅ then every region R is tileable by T over C.

We suppose VT consists of a finite set of points. Next we evaluate pR(x, y)
at each point (α, β) of VT. If for some point we have pR(α, β) 6= 0 then we
have found a coloring argument fα,β which forbids R. If not, but in addition
we know that IT is radical, then we can conclude from Theorem 4 that no
coloring argument can show that R is not tileable. Of course, to completely
resolve whether R is tileable by T is a much harder problem.

All the results so far work in any number of dimensions, not just two.
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12. Final comments

Essentially all of what we have presented so far is a simplification of work
of Barnes [1, 2]. However, much more can be said if we are willing to restrict
our class of tiling problems. Let us now assume that all the tiles and regions
that we consider are bricks. In two-dimensions, bricks are just rectangles. In
d-dimensions, they are regions of the form [a1, b1]× · · · × [ad, bd].

A fundamental result is an analogue of the Hilbert Basis Theorem over N,
due to de Bruijn and Klarner.

Theorem 5 ([3]). When considering tiling problems of bricks by bricks any
collection of brick tiles can be replaced by a finite subcollection.

For brick tiling problems, tiling over C and usual tilings are not too different.
Barnes proved:

Theorem 6 ([2]). Let T be a finite set of brick tiles. Then there is some
constant K such that every brick region R with all dimensions greater than K
can be tiled by T if and only if it can be tiled by T over C.

Together with Ezra Miller and Igor Pak, I have been studying some com-
putational issues for tilings. I now describe some of our results. Let us say
that a set S of bricks has a finite description if it a finite union S = ∪iSi of
brick classes Si such that each class is given by all bricks whose side lengths
l1, . . . , ld satisfy conditions of the form: (1) li = a for some integer a or, (2)
li > a for some integer a or, (3) li > a and li = b mod c for integers a, b and
c.

Proposition 2 ([4]). Let T be a set of bricks. Then the set S of bricks which
can be tiled by T admits a finite description.

Theorem 7 ([4]). Suppose we are in d = 2 dimensions and T is a finite set
of bricks. Then it is possible to compute a finite description for the set S of
bricks tileable by T.

Surprisingly, we conjecture that Theorem 7 fails in higher dimensions. That
is, when d ≥ 3, a finite description for the set S of bricks tileable by T is not
computable.
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