Name:

Final Exam for Math 131, Fall 2008-2009.

Saturday January 17, 2009. Time allowed: 3 hours.

Instructions.

- 1. Answer all parts of all questions on the exam.
- 2. Write your answers on this exam paper. You may use the back of each page. Ask for more paper if you need it.
- 3. No calculators or books allowed.
- 4. You can use any results proved in the lectures or in the textbook. You may not quote results proved in the problem sets, unless you prove them again.
- 5. Apart from the first question, all answers must be justified.
- 6. Full score is 100 points.

1	/10
2	/15
3	/18
4	/8
5	/6
6	/6
7	/7
8	/10
9	/6
10	/6
11	/8
12	/5
Total:	/105

1. (10 points)

Mark each statement true (T) or false (F).

- [T][F] (a) The space X obtained from a hexagon with sides identified according to the labeling scheme $abca^{-1}bc$ is a surface.
- T F (b) Suppose $r: X \to A$ is a retract of X onto a subspace $A \subset X$, and let $x_0 \in A$. Then the map $r_*: \pi_1(X, x_0) \to \pi_1(A, x_0)$ is surjective.
- [T][F] (c) Suppose $p : E \to B$ is a covering map, and $E' \subset E$ is a subspace. Then $E' \to p(E')$ is a covering map.
- [T] [F] (d) Let X be a topological space. Then X is contractible (that is, the identity map id : $X \to X$ is nullhomotopic) if and only if X deformation retracts to a point.
- T || F | (e) A retract of a contractible space X is contractible.
- $[\mathbf{T}]$ $[\mathbf{F}]$ (f) Suppose $p: E \to B$ is a covering map and $f: [0,1] \to B$ is continuous. Assume all spaces are path-connected. Then f lifts uniquely to $\tilde{f}: [0,1] \to E$.
- [T][F](g) Suppose $p: E \to B$ is a covering map and $f: X \to B$ is continuous. Assume all spaces are path-connected. Suppose E is simply-connected but X is not simply-connected. Then no lift $\tilde{f}: X \to E$ of f exists.
- T F (h) There is no retraction from $S^1 \times B^2$ to its boundary torus $S^1 \times S^1$.
- T F (i) Let $X \subset \mathbb{R}^2$ be the union of the circles C_n with radius n and center (n, 0), for $n = 1, 2, \ldots$ Then X is homotopy-equivalent to the countable wedge of circles.
- T F (j) There is a covering map from the 3-fold torus to the 2-fold torus.

- 2. (15 points) What are the fundamental groups of the following spaces? (Give brief explanations.)
 - (a) $S^1 \times S^2$.
 - (b) $S^1 \vee S^2$.
 - (c) A two-fold torus.
 - (d) The quotient space of S^3 obtained by identifying every point with its antipode.
 - (e) The octagon with sides identified according to the labeling scheme $b^{-1}abbbba^{-1}b$. (Write the answer as a free product of two well-known groups.)
 - (f) The wireframe

with topology inherited as a subspace of \mathbb{R}^2 . (Only the lines are in this space.)

(Extra space for Problem 2)

3. (18 points)

- (a) Let X be a torus, and $p : E \to X$, $p' : E' \to X$ two covering maps of X. If E and E' are both two-fold (i.e. $|p^{-1}(x)| = 2 = |(p')^{-1}(x)|$ for $x \in X$) path-connected covering spaces, are they necessarily equivalent?
- (b) (One-dimensional fixed point theorem?) Suppose $f : [0, 1] \to [0, 1]$ is continuous. Is there always an $x \in [0, 1]$ such that f(x) = x?
- (c) For which $m \ge 1$ is the fundamental group of the *m*-fold projective plane abelian? Prove it.
- (d) Suppose $p: E \to B$ is a covering map, and E is not simply-connected. Assume both E and B are path-connected. Prove or disprove: B is not simply-connected.
- (e) Is there a continuous map $f : X \to S^1$ with $\pi_1(X) = \mathbb{Z}/5\mathbb{Z}$ which is not null-homotopic?

(Extra space for Problem 3.)

4. (8 points) Consider the space X obtained from an octagon with sides identified according to the labeling scheme $ada^{-1}bcdcb$.

Figure out which standard surface (n-fold torus or n-fold projective plane) X is homeomorphic with, using *explicit cut and paste operations*.

5. (6 points) Let $X = \{(x, y) \mid x \ge 0\} \subset \mathbb{R}^2$ be equipped with the subspace topology. Carefully prove that X is not a 2-manifold.

6. (6 points) Let $p : E \to B$ be a covering space such that $p^{-1}(b)$ is a finite set of points for each $b \in B$. Suppose B is compact. Prove that E is compact.

7. (7 points) Consider the topological space X constructed as follows: take two tori $Y_1 = S^1 \times S^1$ and $Y_2 = S^1 \times S^1$ and glue them (that is, construct the quotient space using the equivalence relation) using a homeomorphism between the two circles $S^1 \times \{1\} \subset Y_1$ and $S^1 \times \{1\} \subset Y_2$. Calculate, using the Seifert van-Kampen theorem, the fundamental group of X.

- 8. (10 points) Let $X = S_1 \lor S_1$.
 - (a) Draw a picture of the universal covering space of X (no explanation needed).
 - (b) Let a and b be the two standard generators of $\pi_1(X)$. Find and draw a 3-fold covering map $p: E \to X$ such that $p_*(\pi_1(E))$ contains both a^3 and b^3 .
 - (c) What is the universal covering space of the projective plane P^2 ? What is the universal covering space of the wedge $P^2 \vee P^2$ of two projective planes?

9. (6 points) Let X be a path-connected space and $x_0 \in X$. Prove or give a counterexample to the following statement: if $f: X \to X$ is a continuous map satisfying $f(x_0) = x_0$, and f is homotopic to the identity map, then $f_*: \pi_1(X, x_0) \to \pi_1(X, x_0)$ is the identity map.

10. (6 points) Let X be a topological space, and let $F(x,t) : X \times [0,1] \to X$ be a homotopy, where F(x,0) = F(x,1) is the identity map. Prove that for $x_0 \in X$, the loop $F(x_0,t)$ represents an element in the center of $\pi_1(X,x_0)$. (Recall that the center Z of a group G is the set $Z = \{z \in G \mid zg = gz \text{ for all } g \in G\}$.)

11. (8 points)

(a) Let X be a topological space. Suppose $F : [0, 1]^2 \to X$ is a homotopy between two paths $\alpha : [0, 1] \to X$ and $\beta : [0, 1] \to X$, that is $F(x, 0) = \alpha(x)$ and $F(x, 1) = \beta(x)$.

Let $\mathcal{C}([0,1], X)$ be the space of continuous functions from [0,1] to X, equipped with the compact-open topology. Prove that the function $f : [0,1] \to \mathcal{C}([0,1], X)$ given by

$$t \longmapsto (x \mapsto F(x,t))$$

is continuous.

(Recall that the compact-open topology of $\mathcal{C}(Y, Z)$ has subbasis consisting of the sets

$$S(A, U) = \{ f \in \mathcal{C}(Y, Z) \mid f(A) \subset U \}$$

where $A \subset Y$ is compact and $U \subset Z$ is open.)

- (b) When does the converse of (a) hold? That is, if f is continuous, does that imply that F is continuous?
- (c) What are the path-components of $\mathcal{C}([0, 1], S^1)$?
- (d) What are the path-components of $\mathcal{C}(S^1, S^1)$?

- 12. (5 bonus points) Warning: This problem is hard and the points may not justify the time.
 - (a) Let S^1 be embedded in \mathbb{R}^3 in a boring fashion (as the boundary of an embedded disk). The space $\mathbb{R}^3 S^1$ deformation retracts to the wedge $S^1 \vee X$ of a circle and a familiar space X. What is this familiar space X? Prove it.
 - (b) Let $A \subset \mathbb{R}^3$ be the disjoint union of two circles embedded in \mathbb{R}^3 in an unlinked and unknotted manner. Let $B \subset \mathbb{R}^3$ be the disjoint union of two circles embedded in \mathbb{R}^3 linked, but otherwise not knotted. Calculate $\pi_1(\mathbb{R}^3 - A)$ and $\pi_1(\mathbb{R}^3 - B)$ and deduce that $\mathbb{R}^3 - A$ and $\mathbb{R}^3 - B$ are not homotopy-equivalent.