Math 131 Final Exam

Wednesday, May 26, 2004

1. (15 points) A proper map $f: X \to Y$ is, by definition, a continuous map where the inverse image of a compact set is compact. Let $X^* = X \cup \{\infty\}$ be the one-point compactification of X, and let Y^* be the one-point compactification of Y. For an arbitrary function $f: X \to Y$, define $f^*: X^* \to Y^*$ by

$$f^*(x) = \begin{cases} \infty & x = \infty \\ f(x) & \text{otherwise.} \end{cases}$$

Show that f^* is continuous if and only if f is continuous and proper. Conclude that a proper map to a locally compact Hausdorff space is a closed map.

2. Let H be the Hawaiian earring

the union over $n \in \mathbb{N}$ of circles C_n of radius r^n centered at $(0, -r^n)$ (with r < 1). Let W_{∞} be the graph with one vertex x_0 and a countable infinite set of edges $E = \{e_n \mid n \in \mathbb{N}\}$. Recall that this is the quotient space of an infinite disjoint union of intervals (one for each n) where all endpoints are identified. (W_{∞} is also known as the wedge of an infinite number of circles.)

- (a) (10 points) Show that W_{∞} is normal but is not first countable and so is not a metric space.
- (b) (20 points) Consider the loops γ_n in H (resp. W_{∞}) which run clockwise around C_n (resp. along e_n from start to end). In which topologies on $\mathcal{C}([0,1], H)$ (resp. $\mathcal{C}([0,1], W_{\infty})$) does the sequence of paths

$$f_n = \gamma_1 * (\gamma_2 * (\gamma_3 * \cdots * (\gamma_{n-2} * (\gamma_{n-1} * \gamma_n)) \cdots))$$

converge? When does the sequence

$$g_n = ((\cdots((\gamma_1 * \gamma_2) * \gamma_3) * \cdots * \gamma_{n-2}) * \gamma_{n-1}) * \gamma_n$$

converge? Consider the product, uniform, compact convergence, and compact open topologies.

3. Recall that the Klein bottle K is obtained by taking the quotient space of the square

with the equivalence relation where opposite edges are identified ("glued") according to the arrows above.

- (a) (10 points) Find an explicit covering map from \mathbb{R}^2 to K. (Hint: Think about how we showed that \mathbb{R}^2 is the universal covering space of the torus.)
- (b) (10 points) Use the map you found above to find the fundamental group of the Klein bottle. Explicitly specify the multiplication and inverse.
- (c) (10 points) Use the Seifert-van Kampen theorem to give another description of $\pi_1(K)$.
- 4. The degree of a covering map $p: E \to B$ at a point $x \in B$ is the number of elements in $p^{-1}(\{x\})$; it may be a finite number or ∞ .
 - (a) (10 points) Show that the degree is a continuous map from B to $\mathbb{N} \cup \infty$ in the discrete topology. Conclude that if B is connected the degree is constant, so we may talk about the degree of the covering space.
 - (b) (15 points) Find all covering spaces of degree 2 of the theta graph

For each one, find the corresponding set action of $\pi_1(\Gamma, x_0)$ and (if the covering space is connected) generators for the corresponding subgroup of $\pi_1(\Gamma, x_0)$, using the classification of covering spaces we developed.