Math 217 Linear Algebra Winter 2011 HW 01

Section 1.1

(20) One Echelon form of this system is

$$
\left[\begin{array}{ccc}
1 & h & -3 \\
0 & 4+2 h & 0
\end{array}\right]
$$

so the system is always consistent, since the last column is never a pivot column.
(22) One Echelon form for this system is

$$
\left[\begin{array}{ccc}
1 & -3 / 2 & h / 2 \\
0 & 0 & 5-3 h
\end{array}\right]
$$

Therefore, the system is consistent if and only if $h=5 / 3$, which means precisely that the last column is not a pivot column.
(24) a. True. See the box preceding the subsection titled "Existence and Uniqueness Questions."
b. False. The definition of row equivalent requires that there exist a sequence of row operations that transforms one matrix into the other.
c. False. By definition, an inconsistent system has no solution.
d. True. This definition of equivalent systems is in the second paragraph after equation (2).
(26) Answers may vary. The systems corresponding to the following matrices each have the solution set $x_{1}=-2, x_{2}=1, x_{3}=0$. (The tildes represent row equivalence.)

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] } & \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
2 & 1 & 0 & -3 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
2 & 1 & 0 & -3 \\
2 & 0 & 1 & -4
\end{array}\right]
\end{aligned}
$$

(30) To get from the first to the second, multiply the second row by $-1 / 2$. To get from the second to the first, multiply the second row by -2 .

$$
\begin{align*}
4 T_{1}-T_{2} & -T_{4} & =30 \\
-T_{1}+4 T_{2} & -T_{3} & =60 \tag{33}\\
& -T_{2}+4 T_{3}-T_{4} & =70 \\
-T_{1} & -T_{3}+4 T_{4} & =40
\end{align*}
$$

(34) $(20,27.5,30,22.5)$

Section 1.2

(10) The matrix has reduced Echelon form

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & 4 \\
0 & 0 & 1 & -7
\end{array}\right]
$$

So the general solutions have the form $x_{3}=-7$ and $x-2 y=4$.
(14) The matrix has reduced Echelon form

$$
\left[\begin{array}{cccccc}
1 & 0 & 7 & 0 & 0 & 9 \\
0 & 1 & -6 & -3 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

so the general form of the solution set is

$$
\begin{gathered}
x_{5}=0, \\
x_{2}-6 x_{3}-3 x_{4}=2, \\
x_{1}+7 x_{3}=9
\end{gathered}
$$

(20) We begin by row reducing this matrix to

$$
\left[\begin{array}{ccc}
1 & 3 & 2 \\
0 & h-9 & k-6
\end{array}\right]
$$

a. This system has no solution when the last column is a pivot column. This happens precisely when $h=9$ and $k \neq 6$.
b. To have a unique solution means exactly that the second column is a pivot column. Therefore $h \neq 9$.
c. There are infinitely many solutions when the last row is all zeros, i.e., $h=9$ and $k=6$.
(24) The system is inconsistent because the pivot in column 5 means that there is a row of the form

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Since the matrix is the augmented matrix for a system, the system has no solution.
(26) If each column of the coefficient matrix is a pivot column, then its reduced Echelon form is the 3×3 identity matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

so the augmented matrix has the form

$$
\left[\begin{array}{llll}
1 & 0 & 0 & a_{1} \\
0 & 1 & 0 & a_{2} \\
0 & 0 & 1 & a_{3}
\end{array}\right]
$$

for some real numbers a_{1}, a_{2}, a_{3}. This means that a_{1}, a_{2}, a_{3} is the unique solution to the system.
(30) Answers may vary. One system of two equations in three unknowns that is inconsistent is

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=4 \\
& x_{1}+2 x_{2}+3 x_{3}=5
\end{aligned}
$$

(31) Yes, a system of linear equations with more equations than unknowns can be consistent. The following system has a solution $x_{1}=x_{2}=1$:

$$
\begin{gathered}
x_{1}+x_{2}=2 \\
x_{1}-x_{2}=0 \\
3 x_{1}+2 x_{2}=5
\end{gathered}
$$

