Some extra problems

Many of the problems are "True or False" questions. (That usually makes them harder.) If true, you should prove the statement. If false, you should provide a counterexample.

Some of the later questions are quite difficult and should be considered challenge problems.

1. Let A and B be square matrices of the same size. True or False:

$$
(A+B)(A-B)=A^{2}-B^{2}
$$

2. True or False: there is a 3×3 matrix A so that $A^{7}=I$, but A, A^{2}, \ldots, A^{6} are all different from I.
3. Let A be a square matrix such that the sum of the entries in each row adds up to 1 . What can you say about the matrix $I-A$?
4. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$. Suppose

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{x}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}
$$

Prove that $\mathbf{x} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.
5. Bob thinks that

$$
A=\left[\begin{array}{ccc}
-3 & 1 & 2 \\
-1 & 4 & 2 \\
2 & 0 & 6
\end{array}\right]
$$

is the square $A=B^{2}$ of another matrix B. Do you believe him?
Alice thinks that the same matrix A can be written as $A=C C^{T}$ for some (possibly non-square) matrix C. Do you believe her?
6. Let A be the same matrix as in the previous problem. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in$ \mathbb{R}^{3} are linearly independent vectors. True or False: it is always the case that $A \mathbf{v}_{1}, A \mathbf{v}_{2}, A \mathbf{v}_{3}$ are linearly independent.
7. Take the same matrix A again. Change at most one number in A to obtain a matrix B, and find a vector $\mathbf{v} \in \mathbb{R}^{3}$, so that $B \mathbf{x}=\mathbf{v}$ has no solution. This is the kind of thing I find myself doing a lot before an exam or quiz...
8. Let A and B be any two matrices so that the transformation

$$
\mathbf{x} \mapsto A B \mathbf{x}
$$

is one-to-one. True or False: $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one. (Also, same question but for B.)
9. Let A, B, C be 2×2 matrices, and suppose that A and C are invertible. Show that the 4×4 matrix (composed of 2×2 blocks)

$$
\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]
$$

is also invertible, and write down its inverse.
10. Prove that given any five vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{5} \in \mathbb{R}^{3}$, one can find numbers $c_{1}, c_{2}, \ldots, c_{5}$ such that both

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{5} \mathbf{v}_{5}=\mathbf{0} \quad \text { and } \quad c_{1}+c_{2}+\cdots+c_{5}=0
$$

11. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with standard matrix A. Let $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be the linear transformation with standard matrix A^{T}. Prove or disprove: T is one-to-one if and only if S is onto.
12. The trace $\operatorname{tr}(A)$ of a square $n \times n$ matrix A is the $\operatorname{sum} \operatorname{tr}(A)=a_{11}+a_{22}+$ $\cdots+a_{n n}$ of diagonal entries. Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for two $n \times n$ matrices A and B.
13. Let A be a square matrix. We know (do we?) that A is invertible if and only if we can find a square matrix B such that $A B=I$.
True or False: A is singular if and only if we can find a square matrix B such that $A B=0$.
14. Let a, b, c be numbers. Show that the determinant of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right]
$$

is $-(a-b)(b-c)(a-c)$. Generalize this to $n \times n$ matrices. Can you prove it?
15. Let A be the 2×2 matrix corresponding to a rotation by 45°. Let B be the 2×2 matrix corresponding to reflection in the x-axis. How many different matrices can you get by multiplying a bunch of A 's and a bunch of B 's in some order? For example, matrices such as

$$
A B B A, \quad \text { or } \quad A A A B A B A .
$$

16. Suppose that $A=-A^{T}$ (such a matrix is called skew-symmetric). Show that $I+A$ is invertible.
17. Let A and B be 2×2 matrices. Is it always possible to find numbers a, b not both zero, so that $\operatorname{det}(a A+b B)=0$?
