Some extra problems

1. Let $\langle., .\rangle_{1}$ and $\langle., .\rangle_{2}$ be two inner products on a vector space V. Is $\langle\mathbf{v}, \mathbf{w}\rangle=$ $\langle\mathbf{v}, \mathbf{w}\rangle_{1}+\langle\mathbf{v}, \mathbf{w}\rangle_{2}$ an inner product on V ?
2. Is there an inner product on \mathbb{R}^{2} given by

$$
\langle\mathbf{v}, \mathbf{w}\rangle=a v_{1} w_{1}+b v_{1} w_{2}+c v_{2} w_{1}+d v_{2} w_{2}
$$

where a, b, c, d are all non-zero real numbers?
3. Let $V=\mathbb{P}_{2}$ denote the vector space of real polynomials with degree less than or equal to 2 . Is

$$
\langle p(t), q(t)\rangle=p(1) q(1)+p^{\prime}(1) q^{\prime}(1)+p^{\prime \prime}(1) q^{\prime \prime}(1)
$$

an inner product on V ?
4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with standard matrix A. Suppose that $\operatorname{det}(A)=0$. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be any basis for \mathbb{R}^{n}. Prove that the matrix $[T]_{\mathcal{B}}$ of T relative to \mathcal{B} satisfies $\operatorname{det}\left([T]_{\mathcal{B}}\right)=0$.
5. Let A be a $m \times n$ matrix. Prove that every vector in the row space of A is orthogonal to every vector in the nullspace of A.

6 . Does there exist a 3×3 matrix whose eigenvalues include $2-i$ and $i+1$?
7. Let V be an inner product space. Suppose you are told that $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis of V. Explain how you can determine $\langle\mathbf{u}, \mathbf{w}\rangle$ for eveyr $\mathbf{u}, \mathbf{w} \in V$.
8. Find similar matrices A and B with different eigenvectors.
9. Let $V=M_{2 \times 2}$ be the set of 2×2 matrices with real entries. Check that V is a vector space when equipped with matrix addition, and scalar multiplication of matrices. Which of the following subsets form subspaces?
(a) The set of invertible 2×2 matrices.
(b) The set of singular 2×2 matrices.
(c) The set of symmetric matrices, satisfying $A^{T}=A$.
(d) The set of skew-symmetric matrices, satisfying $A^{T}=-A$.
(e) The set of trace zero matrices, satisfying $\operatorname{tr}(A)=0$.
(f) The set of matrices A for which $A \mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ has a solution.
10. Let V be an inner product space and $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Form the $n \times n$ matrix $A=\left(a_{i j}\right)$ where $a_{i j}=\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle$. Prove that A is invertible.
11. Suppose A is a square matrix of rank 1 . Prove that there exist vectors \mathbf{v}, \mathbf{w} so that $A=\mathbf{v w}^{T}$.
12. Suppose A is a square matrix of rank 1 . Prove that

$$
\operatorname{det}(A+I)=\operatorname{tr}(A)+1
$$

13. Let A and B be 5×5 matrices such that $A B=0$. What are the possible ranks of A and B ?
14. Let A be a 2×2 matrix. Prove or provide a counterexample: there are eigenvectors \mathbf{v}, \mathbf{w} of A satisfying $\mathbf{v} \cdot \mathbf{w}=0$.
15. Let $W \subset \mathbb{R}^{n}$ be a subspace. Prove that $W \cap W^{\perp}=\{0\}$.
16. Let A be an $m \times n$ matrix and B an $n \times p$ matrix. Prove that
(a) $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$
(b) $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$
17. Let A be an $n \times n$ real symmetric matrix; i.e., all entries of A are real numbers and $A^{T}=A$. Prove that the eigenvalues of A are real.
18. Suppose V_{1}, V_{2}, V_{3} are mutually orthogonal subspaces of \mathbb{R}^{n}. That is, for $i \neq j$, we have $\mathbf{v} \cdot \mathbf{w}=0$ for $\mathbf{v} \in V_{i}$ and $\mathbf{w} \in V_{j}$. Prove that

$$
\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)+\operatorname{dim}\left(V_{3}\right) \leq n
$$

19. Prove that $(a+b+c)^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)$ for any three real numbers a, b, c.
20. Let A and B be $n \times n$ matrices satisfying

$$
A+B=I \quad \text { and } \quad \operatorname{rank}(A)+\operatorname{rank}(B)=n
$$

(a) Prove that $\operatorname{Col}(A) \cap \operatorname{Col}(B)=\{0\}$.
(b) Prove that $A^{2}=A, B^{2}=B$, and $A B=B A=0$.

