Some extra problems

- 1. Let $\langle .,. \rangle_1$ and $\langle .,. \rangle_2$ be two inner products on a vector space V. Is $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle_1 + \langle \mathbf{v}, \mathbf{w} \rangle_2$ an inner product on V?
- 2. Is there an inner product on \mathbb{R}^2 given by

$$\langle \mathbf{v}, \mathbf{w} \rangle = av_1w_1 + bv_1w_2 + cv_2w_1 + dv_2w_2$$

where a, b, c, d are all non-zero real numbers?

3. Let $V = \mathbb{P}_2$ denote the vector space of real polynomials with degree less than or equal to 2. Is

$$\langle p(t), q(t) \rangle = p(1)q(1) + p'(1)q'(1) + p''(1)q''(1)$$

an inner product on V?

- 4. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Suppose that $\det(A) = 0$. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be any basis for \mathbb{R}^n . Prove that the matrix $[T]_{\mathcal{B}}$ of T relative to \mathcal{B} satisfies $\det([T]_{\mathcal{B}}) = 0$.
- 5. Let A be a $m \times n$ matrix. Prove that every vector in the row space of A is orthogonal to every vector in the nullspace of A.
- 6. Does there exist a 3×3 matrix whose eigenvalues include 2-i and i+1?
- 7. Let V be an inner product space. Suppose you are told that $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthonormal basis of V. Explain how you can determine $\langle \mathbf{u}, \mathbf{w} \rangle$ for every $\mathbf{u}, \mathbf{w} \in V$.
- 8. Find similar matrices A and B with different eigenvectors.
- 9. Let $V = M_{2\times 2}$ be the set of 2×2 matrices with real entries. Check that V is a vector space when equipped with matrix addition, and scalar multiplication of matrices. Which of the following subsets form subspaces?
 - (a) The set of invertible 2×2 matrices.
 - (b) The set of singular 2×2 matrices.
 - (c) The set of symmetric matrices, satisfying $A^T = A$.
 - (d) The set of skew-symmetric matrices, satisfying $A^T = -A$.
 - (e) The set of trace zero matrices, satisfying tr(A) = 0.
 - (f) The set of matrices A for which $A\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ has a solution.
- 10. Let V be an inner product space and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for V. Form the $n \times n$ matrix $A = (a_{ij})$ where $a_{ij} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle$. Prove that A is invertible.

- 11. Suppose A is a square matrix of rank 1. Prove that there exist vectors \mathbf{v}, \mathbf{w} so that $A = \mathbf{v}\mathbf{w}^T$.
- 12. Suppose A is a square matrix of rank 1. Prove that

$$\det(A+I) = \operatorname{tr}(A) + 1.$$

- 13. Let A and B be 5×5 matrices such that AB = 0. What are the possible ranks of A and B?
- 14. Let A be a 2×2 matrix. Prove or provide a counterexample: there are eigenvectors \mathbf{v} , \mathbf{w} of A satisfying \mathbf{v} . $\mathbf{w} = 0$.
- 15. Let $W \subset \mathbb{R}^n$ be a subspace. Prove that $W \cap W^{\perp} = \{0\}$.
- 16. Let A be an $m \times n$ matrix and B an $n \times p$ matrix. Prove that
 - (a) $rank(AB) \le rank(A)$
 - (b) $rank(AB) \le rank(B)$
- 17. Let A be an $n \times n$ real symmetric matrix; i.e., all entries of A are real numbers and $A^T = A$. Prove that the eigenvalues of A are real.
- 18. Suppose V_1, V_2, V_3 are mutually orthogonal subspaces of \mathbb{R}^n . That is, for $i \neq j$, we have $\mathbf{v}.\mathbf{w} = 0$ for $\mathbf{v} \in V_i$ and $\mathbf{w} \in V_j$. Prove that

$$\dim(V_1) + \dim(V_2) + \dim(V_3) \le n.$$

- 19. Prove that $(a+b+c)^2 \leq 3(a^2+b^2+c^2)$ for any three real numbers a,b,c.
- 20. Let A and B be $n \times n$ matrices satisfying

$$A + B = I$$
 and $rank(A) + rank(B) = n$.

- (a) Prove that $Col(A) \cap Col(B) = \{0\}.$
- (b) Prove that $A^2 = A$, $B^2 = B$, and AB = BA = 0.