Book Homework \#9 Answers

Math 217 W11

5.2.12. $(-1-\lambda)(4-\lambda)(2-\lambda)=-\lambda^{3}+5 \lambda^{2}-2 \lambda-8$
5.2.14. $(-4-\lambda)(7-\lambda)(1-\lambda)=-\lambda^{3}+4 \lambda^{2}+25 \lambda-28$
5.2.18. If $h=6, \operatorname{Nul}(A-5 I)=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 1 \\ 0\end{array}\right)\right\}$. If $h \neq 6, \operatorname{Nul}(A-5 I)=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\right\}$.
5.2.20. We have a theorem which says that, for any matrix B, the matrices B, B^{T} have the same determinant. Note that, for any matrix A and any scalar $\lambda,(A-\lambda I)^{T}=A^{T}-\lambda I$, so we have the identity $\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}(A-\lambda I)$, so A, A^{T} have the same characteristic polynomial.
5.2.24. Suppose A and B are similar matrices. Then there exists an invertible matrix P such that $B=P A P^{-1}$.

$$
\operatorname{det} B=\operatorname{det}\left(P A P^{-1}\right)=(\operatorname{det} P)(\operatorname{det} A)\left(\operatorname{det} P^{-1}\right)=(\operatorname{det} P)(\operatorname{det} A)(\operatorname{det} P)^{-1}=\operatorname{det} A
$$

5.3.6. The eigenvalues are 5 and 4. The 5-eigenspace has a basis $\left\{\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$, and the 4 eigenspace has a basis $\left\{\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)\right\}$.
5.3.18. (The answer is not unique.) $P=\left(\begin{array}{ccc}-4 & 1 & -2 \\ 3 & 0 & 1 \\ 0 & 3 & 2\end{array}\right) ; D=\left(\begin{array}{ccc}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3\end{array}\right)$.
5.3.20. (The answer is not unique.) $P=\left(\begin{array}{cccc}0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) ; D=\left(\begin{array}{cccc}4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$.
5.3.24. A is not diagonalizable. Theorem 7 b settles the question immediately. Alternatively, suppose that A were diagonalizable. Then A has an eigenbasis $\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$. Each of these vectors must be in one of the two eigenspaces, so some two of them are in the same one-dimensional eigenspace, so they are dependent. This contradicts the supposition that the three vectors form a basis.
5.3.28. Suppose that A has n independent eigenvectors. Then these vectors form an eigenbasis of A, so that A is diagonalizable. Thus there exist a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$. Then $A^{T}=\left(P D P^{-1}\right)^{T}=\left(P^{T}\right)^{-1} D^{T} P^{T}$. Since diagonal matrices are symmetric, we have $A^{T}=Q D Q^{-1}$, where $Q=\left(P^{T}\right)^{-1}$. Thus A^{T} is diagonalizable, and admit an eigenbasis consisting of n independent eigenvectors.
5.3.32. ($\left.\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ is diagonalizable (easy to see because the eigenvalues 1 and 0 are real and distinct) and not invertible (easy to see because of the row of zeroes).

