Book Homework #11 Answers

Math 217 W11

5.5.6.
$$\lambda = 4 - 3i, \begin{pmatrix} i \\ 1 \end{pmatrix}; \lambda = 4 + 3i, \begin{pmatrix} -i \\ 1 \end{pmatrix}$$

5.5.12.
$$\lambda = \pm .3i, \varphi = -\pi/2, r = .3$$

5.5.18. (many other answers are possible)
$$P = \begin{pmatrix} 1 & -3 \\ 2 & 0 \end{pmatrix}$$
; $C = \begin{pmatrix} .8 & -.6 \\ .6 & .8 \end{pmatrix}$

5.5.25. Begin by writing $\mathbf{v} = (\operatorname{Re} \mathbf{v}) + i(\operatorname{Im} \mathbf{v})$. Because matrix-vector multiplication is linear,

$$A\mathbf{v} = A(\operatorname{Re} \mathbf{v}) + A(i\operatorname{Im} \mathbf{v}) = A(\operatorname{Re} \mathbf{v}) + i(A(\operatorname{Im} \mathbf{v})).$$

Since all the entries in A, $\operatorname{Re} \boldsymbol{v}$, and $\operatorname{Im} \boldsymbol{v}$ are real, $A(\operatorname{Re} \boldsymbol{v})$ and $A(\operatorname{Im} \boldsymbol{v})$ are real vectors. Thus we have written $A\boldsymbol{v}$ in the form $\boldsymbol{a}+i\boldsymbol{b}$ for real vectors $\boldsymbol{a},\boldsymbol{b}$, and such a decomposition is unique: $\operatorname{Re}(A\boldsymbol{v})=A(\operatorname{Re} \boldsymbol{v})$ and $\operatorname{Im}(A\boldsymbol{v})=A(\operatorname{Im} \boldsymbol{v})$.

5.5.26.

a) If $\lambda = a - bi$, then

$$A\mathbf{v} = \lambda \mathbf{v} = (a - bi)(\operatorname{Re} \mathbf{v} + i\operatorname{Im} \mathbf{v}) = (a\operatorname{Re} \mathbf{v} + b\operatorname{Im} \mathbf{v}) + i(a\operatorname{Im} \mathbf{v} - b\operatorname{Re} \mathbf{v}).$$

By Exercise 25, $A(\operatorname{Re} \boldsymbol{v}) = \operatorname{Re}(A\boldsymbol{v}) = a \operatorname{Re} \boldsymbol{v} + b \operatorname{Im} \boldsymbol{v}$, and likewise $A(\operatorname{Im} \boldsymbol{v}) = \operatorname{Im}(A\boldsymbol{v}) = -b \operatorname{Re} \boldsymbol{v} + a \operatorname{Im} \boldsymbol{v}$.

b) Let $P = [\operatorname{Re} \boldsymbol{v} \quad \operatorname{Im} \boldsymbol{v}]$. By part a, $A(\operatorname{Re} \boldsymbol{v}) = P\left(\begin{smallmatrix} a \\ b \end{smallmatrix} \right), A(\operatorname{Im} \boldsymbol{v}) = P\left(\begin{smallmatrix} -b \\ a \end{smallmatrix} \right)$. Combining these,

$$A\,P = [A(\operatorname{Re} \boldsymbol{v}) \quad A(\operatorname{Im} \boldsymbol{v})] = \left(\begin{array}{cc} P\!\left(\begin{array}{c} a \\ b \end{array}\right) \quad P\!\left(\begin{array}{c} -b \\ a \end{array}\right) \right) = P\!\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) = PC$$