Book Homework \#11 Answers

Math 217 W11

5.5.6. $\lambda=4-3 i,\binom{i}{1} ; \lambda=4+3 i,\binom{-i}{1}$
5.5.12. $\lambda= \pm .3 i, \varphi=-\pi / 2, r=.3$
5.5.18. (many other answers are possible) $P=\left(\begin{array}{cc}1 & -3 \\ 2 & 0\end{array}\right) ; C=\left(\begin{array}{cc}.8 & -.6 \\ .6 & .8\end{array}\right)$
5.5.25. Begin by writing $\boldsymbol{v}=(\operatorname{Re} \boldsymbol{v})+i(\operatorname{Im} \boldsymbol{v})$. Because matrix-vector multiplication is linear,

$$
A \boldsymbol{v}=A(\operatorname{Re} \boldsymbol{v})+A(i \operatorname{Im} \boldsymbol{v})=A(\operatorname{Re} \boldsymbol{v})+i(A(\operatorname{Im} \boldsymbol{v})) .
$$

Since all the entries in $A, \operatorname{Re} \boldsymbol{v}$, and $\operatorname{Im} \boldsymbol{v}$ are real, $A(\operatorname{Re} \boldsymbol{v})$ and $A(\operatorname{Im} \boldsymbol{v})$ are real vectors. Thus we have written $A \boldsymbol{v}$ in the form $\boldsymbol{a}+i \boldsymbol{b}$ for real vectors $\boldsymbol{a}, \boldsymbol{b}$, and such a decomposition is unique: $\operatorname{Re}(A \boldsymbol{v})=A(\operatorname{Re} \boldsymbol{v})$ and $\operatorname{Im}(A \boldsymbol{v})=A(\operatorname{Im} \boldsymbol{v})$.

5.5.26.

a) If $\lambda=a-b i$, then

$$
A \boldsymbol{v}=\lambda \boldsymbol{v}=(a-b i)(\operatorname{Re} \boldsymbol{v}+i \operatorname{Im} \boldsymbol{v})=(a \operatorname{Re} \boldsymbol{v}+b \operatorname{Im} \boldsymbol{v})+i(a \operatorname{Im} \boldsymbol{v}-b \operatorname{Re} \boldsymbol{v}) .
$$

By Exercise 25, $A(\operatorname{Re} \boldsymbol{v})=\operatorname{Re}(A \boldsymbol{v})=a \operatorname{Re} \boldsymbol{v}+b \operatorname{Im} \boldsymbol{v}$, and likewise
$A(\operatorname{Im} \boldsymbol{v})=\operatorname{Im}(A \boldsymbol{v})=-b \operatorname{Re} \boldsymbol{v}+a \operatorname{Im} \boldsymbol{v}$.
b) Let $P=\left[\begin{array}{ll}\operatorname{Re} \boldsymbol{v} & \operatorname{Im} \boldsymbol{v}\end{array}\right]$. By part a, $A(\operatorname{Re} \boldsymbol{v})=P\binom{a}{b}, A(\operatorname{Im} \boldsymbol{v})=P\binom{-b}{a}$. Combining these,

$$
A P=\left[\begin{array}{ll}
A(\operatorname{Re} \boldsymbol{v}) & A(\operatorname{Im} \boldsymbol{v})
\end{array}\right]=\left(\begin{array}{c}
P\binom{a}{b} P\binom{-b}{a}
\end{array}\right)=P\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)=P C
$$

