Book Homework #13 Answers Math 217 W11

6.2.6. Not orthogonal. (The second and third vectors are not orthogonal.)

6.2.10. Compute $u_1 \cdot u_2 = u_1 \cdot u_3 = u_2 \cdot u_3 = 0$. Since the u_i are nonzero and orthogonal, they are independent. Since there are three of them, they form an orthogonal basis of \mathbb{R}^3 .

$$\boldsymbol{x} = \left(\frac{\boldsymbol{x} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1}\right) \boldsymbol{u}_1 + \left(\frac{\boldsymbol{x} \cdot \boldsymbol{u}_2}{\boldsymbol{u}_2 \cdot \boldsymbol{u}_2}\right) \boldsymbol{u}_2 + \left(\frac{\boldsymbol{x} \cdot \boldsymbol{u}_3}{\boldsymbol{u}_3 \cdot \boldsymbol{u}_3}\right) \boldsymbol{u}_3 = \frac{4}{3} \boldsymbol{u}_1 + \frac{1}{3} \boldsymbol{u}_2 + \frac{1}{3} \boldsymbol{u}_3$$

6.2.16. $\operatorname{proj}_{\boldsymbol{u}}\boldsymbol{y} = \begin{pmatrix} 3\\6 \end{pmatrix}; \boldsymbol{y} - \begin{pmatrix} 3\\6 \end{pmatrix} = \begin{pmatrix} -6\\3 \end{pmatrix}; \left\| \begin{pmatrix} -6\\3 \end{pmatrix} \right\| = \sqrt{45}$. The distance from \boldsymbol{y} to the line spanned by \boldsymbol{u} is $\sqrt{45}$.

6.2.24.

- a) True. (Orthogonal sets can include zero; but orthogonal sets not containing zero are always independent.)
- b) False. (This is the definition of *orthogonal*.)
- c) True. (Theorem 7 and definition of lengths.)
- d) True. (Rescaling v by c will rescale $y \cdot v$ and v each by c, but also rescale the denominator $v \cdot v$ by c^2 to compensate.)
- e) True. (The definition tells you how to compute the inverse.)

6.2.26. Theorem 4 tells us that the *n* orthogonal vectors are independent. Since they span W, they form a basis of W. Thus W is an *n*-dimensional subspace of \mathbb{R}^n , so it is all of \mathbb{R}^n .

6.3.6. First note that $\boldsymbol{u}_1 \cdot \boldsymbol{u}_2 = 0$. Then use Thm 8, eqn 2 to get $\hat{\boldsymbol{y}} = \frac{-3}{2}\boldsymbol{u}_1 + \frac{5}{2}\boldsymbol{u}_2 = \begin{pmatrix} 6\\4\\1 \end{pmatrix}$. That is, $\boldsymbol{y} \in \operatorname{Span}\{\boldsymbol{u}_1, \boldsymbol{u}_2\}$.

6.3.10. $y = \begin{pmatrix} 5 \\ 2 \\ 3 \\ 6 \end{pmatrix} + \begin{pmatrix} -2 \\ 2 \\ 2 \\ 0 \end{pmatrix}$ **6.3.14.** $\begin{pmatrix} 1 \\ 0 \\ -1/2 \\ -3/2 \end{pmatrix}$

6.3.22.

- a) True. (Proof of Orthogonal Decomposition Theorem.)
- b) True. (The geometric interpretation of projection.)
- c) True. (uniqueness statement embedded in Theorem 8)
- d) False. (the best approximation is $\operatorname{proj}_W \boldsymbol{y}$)

e) False. (but true in the special case n = p)

6.3.24.

- a) By hypothesis, the \boldsymbol{w}_i are pairwise disjoint, as are the \boldsymbol{v}_i . Also, $\boldsymbol{w}_i \cdot \boldsymbol{v}_i = 0$ for all i, jbecause $\boldsymbol{w}_i \in W$ and $\boldsymbol{v}_i \in W^{\perp}$.
- b) For any $\boldsymbol{y} \in \mathbb{R}^n$, write $\boldsymbol{y} = \hat{\boldsymbol{y}} + \boldsymbol{z}$ for some $\hat{\boldsymbol{y}} \in W$ and $\boldsymbol{z} \in W^{\perp}$, as in the Orthogonal Decomposition Theorem. Then there exist scalars c_i, d_j such that $\boldsymbol{y} = \hat{\boldsymbol{y}} + \boldsymbol{z} = c_1 \boldsymbol{w}_1 + \dots + c_n \boldsymbol{w}_n$ $c_p w_p + d_1 v_1 + \cdots + d_q v_q$. Thus the set $\{w_1, w_2, \dots, w_p, v_1, \dots, v_q\}$ spans \mathbb{R}^n .
- c) The set $\{w_1, w_2, ..., w_p, v_1, ..., v_q\}$ spans \mathbb{R}^n by part (b) and is independent by part (a) and Theorem 4, so it is a basis of \mathbb{R}^n .

$$n = \dim \mathbb{R}^n = p + q = \dim W + \dim W^{\perp}$$

6.4.12. $\left\{ \begin{pmatrix} 1\\ -1\\ 0\\ 1\\ 1 \end{pmatrix}, \begin{pmatrix} -1\\ 1\\ 2\\ 1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ 1\\ 0\\ -1\\ 1 \end{pmatrix} \right\}$ (other answers are possible, but this is the only one that

arises from the "standard" method)

6.4.14.
$$R = \begin{pmatrix} 7 & 7 \\ 0 & 7 \end{pmatrix}$$

6.4.16.
$$Q = \begin{pmatrix} 1/2 & -1/\sqrt{8} & 1/2 \\ -1/2 & 1/\sqrt{8} & 1/2 \\ 0 & 2/\sqrt{8} & 0 \\ 1/2 & 1/\sqrt{8} & -1/2 \\ 1/2 & 1/\sqrt{8} & 1/2 \end{pmatrix}, R = \begin{pmatrix} 2 & 8 & 7 \\ 0 & \sqrt{8} & 12/\sqrt{8} \\ 0 & 0 & 6 \end{pmatrix}$$

6.4.18.

- a) False. (The three orthogonal vectors must be nonzero to be a basis for a three-dimensional subspace.)
- b) True. (If $x \notin W$, then $x \neq \operatorname{proj}_W x$.)
- c) True. (Theorem 12.)

6.4.20. If $y \in \text{Col } A$, then there exists an x such that Ax = y. Then y = QRx = Q(Rx), so that $y \in \operatorname{Col} Q$.

Conversely, suppose $y \in \text{Col } Q$, so that there exists an x such that y = Qx for some x. Since R is invertible, the equation A = QR can be rewritten in the form $Q = AR^{-1}$. This gives y = $AR^{-1}\boldsymbol{x} = A(R^{-1}\boldsymbol{x})$, so that $\boldsymbol{y} \in \operatorname{Col} A$.

Combining these, $\operatorname{Col} A = \operatorname{Col} Q$.