Book Homework \#14 Answers

Math 217 W11

6.5.12.
a) $\hat{b}=\left(\begin{array}{l}5 \\ 2 \\ 3 \\ 6\end{array}\right)$
b) $\hat{\boldsymbol{x}}=\left(\begin{array}{c}1 / 3 \\ 14 / 3 \\ -5 / 3\end{array}\right)$
6.5.16. $\hat{x}=\binom{2.9}{.9}$

6.5.18.

a) True. (Paragraph following def'n of least-squares solution)
b) False. (Figure 1 and the preceding discussion)
c) True. (Equation (1) and following discussion)
d) False. (This formula only applies when the columns of A are linearly independent.)
e) False. (Discussion following Example 4)
f) False. ("Numerical Note")
6.5.20. Suppose that $A \boldsymbol{x}=\mathbf{0}$. Then $A^{T} A \boldsymbol{x}=A^{T} \mathbf{0}=\mathbf{0}$. Since $A^{T} A$ is invertible, by hypothesis, $\boldsymbol{x}=\mathbf{0}$. Hence the columns of A are linearly independent.
6.5.22. $A^{T} A$ has n columns. Then $\operatorname{rank} A^{T} A=n-\operatorname{dim} \operatorname{Nul} A^{T} A=n-\operatorname{dim} \operatorname{Nul} A=\operatorname{rank} A$, where the first and last equalities are by the rank-nullity theorem and the middle one uses Exercise 19 (which is odd and has a solution in the book).

6.7.9.

a) $\hat{p_{2}}(t)=5$
b) $\left(p_{2}-\hat{p_{2}}\right)(t)=t^{2}-5$ completes an orthogonal basis. The multiple $q(t)=\frac{1}{4}\left(t^{2}-5\right)$ is correctly normalized.
6.7.10.

Polynomial	p_{0}	p_{1}	q	$p(t)=t^{3}$
Values	$\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$	$\left(\begin{array}{c}-3 \\ -1 \\ 1 \\ 3\end{array}\right)$	$\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)$	$\left(\begin{array}{c}-27 \\ -1 \\ 1 \\ 27\end{array}\right)$

$\hat{p}(t)=\frac{0}{4} p_{0}(t)+\frac{164}{20} p_{1}(t)+\frac{0}{4} q(t)=\frac{41}{5} t$
6.7.14. We check the defining properties of an inner product in turn.
1.

$$
\begin{array}{rlr}
\langle\boldsymbol{u}, \boldsymbol{v}\rangle & =T(\boldsymbol{u}) \cdot T(\boldsymbol{v}) \quad(\text { definition of }\langle\bullet, \bullet\rangle) \\
& =T(\boldsymbol{v}) \cdot T(\boldsymbol{u}) \quad(\text { commutativity of dot product }) \\
& =\langle\boldsymbol{v}, \boldsymbol{u}\rangle \quad(\text { definition of }\langle\bullet, \bullet\rangle)
\end{array}
$$

2.

$$
\begin{aligned}
\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{w}\rangle & =T(\boldsymbol{u}+\boldsymbol{v}) \cdot T(\boldsymbol{w}) \quad \text { (definition of }\langle\bullet, \bullet\rangle) \\
& =(T(\boldsymbol{u})+T(\boldsymbol{v})) \cdot T(\boldsymbol{w}) \quad \text { (linearity of } T) \\
& =T(\boldsymbol{u}) \cdot T(\boldsymbol{w})+T(\boldsymbol{v}) \cdot T(\boldsymbol{w}) \quad \text { (dot product distributes over addition) } \\
& =\langle\boldsymbol{u}, \boldsymbol{w}\rangle+\langle\boldsymbol{v}, \boldsymbol{w}\rangle \quad \text { (definition of }\langle\bullet, \bullet\rangle)
\end{aligned}
$$

3.

$$
\begin{array}{rlr}
\langle c \boldsymbol{u}, \boldsymbol{v}\rangle & =T(c \boldsymbol{u}) \cdot T(\boldsymbol{v}) \quad \text { (definition of }\langle\bullet, \bullet\rangle) \\
& =(c T(\boldsymbol{u})) \cdot T(\boldsymbol{v}) \quad \text { (linearity of } T) \\
& =c(T(\boldsymbol{u}) \cdot T(\boldsymbol{v})) \quad \text { (bilinearity of dot product) } \\
& =c\langle\boldsymbol{u}, \boldsymbol{v}\rangle \quad(\text { definition of }\langle\bullet, \bullet\rangle)
\end{array}
$$

4. For each \boldsymbol{u}, we have $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=T(\boldsymbol{u}) \cdot T(\boldsymbol{u}) \geq 0$ (Theorem 1d). If $\boldsymbol{u}=\mathbf{0}$, then by linearity $T(\boldsymbol{u})=\mathbf{0}$, and thus $\langle\mathbf{0}, \mathbf{0}\rangle=\mathbf{0} \cdot \mathbf{0}=0$. Finally, if $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=0$, then $T(\boldsymbol{u}) \cdot T(\boldsymbol{u})=0$, so $T(\boldsymbol{u})=\mathbf{0}$ by Theorem 1d. Since T is an isomorphism, this implies $\boldsymbol{u}=\mathbf{0}$.
(Note that this part, and only this part, fails if we merely assume that T is linear.)

6.7.16.

$$
\begin{aligned}
\|\boldsymbol{u}-\boldsymbol{v}\|^{2} & =\langle\boldsymbol{u}-\boldsymbol{v}, \boldsymbol{u}-\boldsymbol{v}\rangle \\
& =\langle\boldsymbol{u}, \boldsymbol{u}-\boldsymbol{v}\rangle-\langle\boldsymbol{v}, \boldsymbol{u}-\boldsymbol{v}\rangle \\
& =\langle\boldsymbol{u}, \boldsymbol{u}\rangle-\langle\boldsymbol{u}, \boldsymbol{v}\rangle-\langle\boldsymbol{v}, \boldsymbol{u}\rangle+\langle\boldsymbol{v}, \boldsymbol{v}\rangle \\
& =1-0-0+1 \\
& =2
\end{aligned}
$$

Thus, $\|\boldsymbol{u}-\boldsymbol{v}\|=\sqrt{2}$.
6.7.25. $1, t, 3 t^{2}-1$
6.7.26. $1, t, 3 t^{2}-4$

