Book Homework #14 Answers

Math 217 W11

6.5.12.

a)
$$\hat{\boldsymbol{b}} = \begin{pmatrix} 5 \\ 2 \\ 3 \\ 6 \end{pmatrix}$$

b)
$$\hat{\boldsymbol{x}} = \begin{pmatrix} 1/3 \\ 14/3 \\ -5/3 \end{pmatrix}$$

6.5.16.
$$\hat{x} = \begin{pmatrix} 2.9 \\ .9 \end{pmatrix}$$

6.5.18.

- a) True. (Paragraph following def'n of least-squares solution)
- b) False. (Figure 1 and the preceding discussion)
- c) True. (Equation (1) and following discussion)
- d) False. (This formula only applies when the columns of A are linearly independent.)
- e) False. (Discussion following Example 4)
- f) False. ("Numerical Note")

6.5.20. Suppose that $A\mathbf{x} = \mathbf{0}$. Then $A^T A \mathbf{x} = A^T \mathbf{0} = \mathbf{0}$. Since $A^T A$ is invertible, by hypothesis, $\mathbf{x} = \mathbf{0}$. Hence the columns of A are linearly independent.

6.5.22. $A^T A$ has n columns. Then rank $A^T A = n - \dim \operatorname{Nul} A^T A = n - \dim \operatorname{Nul} A = \operatorname{rank} A$, where the first and last equalities are by the rank-nullity theorem and the middle one uses Exercise 19 (which is odd and has a solution in the book).

6.7.9.

a)
$$\hat{p}_2(t) = 5$$

b) $(p_2 - \hat{p_2})(t) = t^2 - 5$ completes an orthogonal basis. The multiple $q(t) = \frac{1}{4}(t^2 - 5)$ is correctly normalized.

6.7.10. Polynomial
$$p_0$$
 p_1 q $p(t) = t^3$
Values
$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \begin{pmatrix} -3\\-1\\1\\3 \end{pmatrix} \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix} \begin{pmatrix} -27\\-1\\1\\27 \end{pmatrix}$$

$$\hat{p}(t) = \frac{0}{4}p_0(t) + \frac{164}{20}p_1(t) + \frac{0}{4}q(t) = \frac{41}{5}t$$

6.7.14. We check the defining properties of an inner product in turn.

1.

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = T(\boldsymbol{u}) \cdot T(\boldsymbol{v})$$
 (definition of $\langle \bullet, \bullet \rangle$)
= $T(\boldsymbol{v}) \cdot T(\boldsymbol{u})$ (commutativity of dot product)
= $\langle \boldsymbol{v}, \boldsymbol{u} \rangle$ (definition of $\langle \bullet, \bullet \rangle$)

2.

$$\begin{aligned} \langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{w} \rangle &= T(\boldsymbol{u} + \boldsymbol{v}) \cdot T(\boldsymbol{w}) & \text{ (definition of } \langle \bullet, \bullet \rangle) \\ &= (T(\boldsymbol{u}) + T(\boldsymbol{v})) \cdot T(\boldsymbol{w}) & \text{ (linearity of } T) \\ &= T(\boldsymbol{u}) \cdot T(\boldsymbol{w}) + T(\boldsymbol{v}) \cdot T(\boldsymbol{w}) & \text{ (dot product distributes over addition)} \\ &= \langle \boldsymbol{u}, \boldsymbol{w} \rangle + \langle \boldsymbol{v}, \boldsymbol{w} \rangle & \text{ (definition of } \langle \bullet, \bullet \rangle) \end{aligned}$$

3.

4. For each \boldsymbol{u} , we have $\langle \boldsymbol{u}, \boldsymbol{u} \rangle = T(\boldsymbol{u}) \cdot T(\boldsymbol{u}) \geq 0$ (Theorem 1d). If $\boldsymbol{u} = \boldsymbol{0}$, then by linearity $T(\boldsymbol{u}) = \boldsymbol{0}$, and thus $\langle \boldsymbol{0}, \boldsymbol{0} \rangle = \boldsymbol{0} \cdot \boldsymbol{0} = 0$. Finally, if $\langle \boldsymbol{u}, \boldsymbol{u} \rangle = 0$, then $T(\boldsymbol{u}) \cdot T(\boldsymbol{u}) = 0$, so $T(\boldsymbol{u}) = \boldsymbol{0}$ by Theorem 1d. Since T is an isomorphism, this implies $\boldsymbol{u} = \boldsymbol{0}$.

(Note that this part, and only this part, fails if we merely assume that T is linear.)

6.7.16.

$$||\boldsymbol{u} - \boldsymbol{v}||^2 = \langle \boldsymbol{u} - \boldsymbol{v}, \boldsymbol{u} - \boldsymbol{v} \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{u} - \boldsymbol{v} \rangle - \langle \boldsymbol{v}, \boldsymbol{u} - \boldsymbol{v} \rangle$$

$$= \langle \boldsymbol{u}, \boldsymbol{u} \rangle - \langle \boldsymbol{u}, \boldsymbol{v} \rangle - \langle \boldsymbol{v}, \boldsymbol{u} \rangle + \langle \boldsymbol{v}, \boldsymbol{v} \rangle$$

$$= 1 - 0 - 0 + 1$$

$$= 2$$

Thus, $\|u - v\| = \sqrt{2}$.

6.7.25.
$$1, t, 3t^2 - 1$$

6.7.26.
$$1, t, 3t^2 - 4$$