Book Homework #2 Answers Math 217 W11

1.3.6.

1.3.4.

 $-2x_1 + 8x_2 + x_3 = 0$ $3x_1 + 5x_2 - 6x_3 = 0$

1.3.15. Many, many answers are possible. Here are five possible answers: $0\boldsymbol{v}_1 + 0\boldsymbol{v}_2 = \begin{pmatrix} 0\\0\\0\\-12 \end{pmatrix}$, $2\boldsymbol{v}_1 + 0\boldsymbol{v}_2 = \begin{pmatrix} 14\\2\\-12 \end{pmatrix}$, $0\boldsymbol{v}_1 - 1\boldsymbol{v}_2 = \begin{pmatrix} 5\\-3\\0 \end{pmatrix}$, $1\boldsymbol{v}_1 + 1\boldsymbol{v}_2 = \begin{pmatrix} 2\\4\\-6 \end{pmatrix}$, $2\boldsymbol{v}_1 - 1\boldsymbol{v}_2 = \begin{pmatrix} 19\\-1\\-12 \end{pmatrix}$.

1.3.18. Suppose \boldsymbol{y} is a linear combination of $\boldsymbol{v}_1, \boldsymbol{v}_2$. Then we have $u\begin{pmatrix} 1\\0\\-2 \end{pmatrix} + v\begin{pmatrix} -3\\1\\8 \end{pmatrix} = \begin{pmatrix} h\\-5\\-3 \end{pmatrix}$. This gives three scalar equations.

$$u - 3v = h$$
$$v = -5$$
$$-2u + 8v = -3$$

The second equation says v = -5, and the substitution in the third equation gives $u = -\frac{37}{2}$. Then the first equation will also hold iff $h = -\frac{37}{2} - 3(-5) = -\frac{7}{2}$.

The vector \boldsymbol{y} is in the plane spanned by $\boldsymbol{v}_1, \boldsymbol{v}_2$ if and only if h = -7/2.

1.3.24.

- a) True. (page 31)
- b) True. (follows from algebraic properties at the top of page of page 32)
- c) False. (page 32, just above Example 4)
- d) True. (These are the vectors you get when 0 is the coefficient of v.)
- e) True. (discussion leading to blue box on page 34)

1.3.32. Many solutions exist. Since none of the three v_i are parallel, any two of them span the whole plane. Then we could take, say, x_3 to be any number and still solve the rearranged equation $x_1v_1 + x_2v_2 = b - x_3v_3$ for x_1, x_2 .

1.4.16. This problem can be solved by putting the augmented matrix into echelon form (it is not necessary to reduce). The equation has a solution if and only if $b_1 + 2b_2 + b_3 = 0$. The set of all such **b** forms a plane through the origin.

1.4.18. There are only three pivot positions in this matrix, but there are four rows. There cannot be a pivot position in every row, so Theorem 4 says that the equation cannot be consistent for all $y \in \mathbb{R}^4$.

1.4.20. By Theorem 4, this is essentially the same question as the previous. No.

1.4.24.

- a) True. (Thm 3)
- b) True. (pages 41–42)
- c) True. (Thm 3)
- d) True. (Thm 3)
- e) False. The system may or may not be consistent, depending on whether the last pivot is or is not in the last column.
- f) True. (Thm 3)

1.4.34. Suppose for the sake of contradiction that the columns of A do not span \mathbb{R}^4 . Then, by Theorem 4, A does not have a pivot position in every row. That is, there are at most three pivots. That is, there is at least one column which does not have a pivot. Thus, whenever we solve an equation Ax = b, there will be at least one free variable. There can never be a unique solution.

1.4.36. Because matrix-vector multiplication is *linear*, A(4y) = 4(Ay) = 4z. Thus 4y is a solution to the system.

1.5.14. The solution set consists of those vectors of the form $\boldsymbol{x} = \begin{pmatrix} 0 \\ 8 \\ 2 \\ 0 \end{pmatrix} + r \begin{pmatrix} 3 \\ 1 \\ -5 \\ 1 \end{pmatrix}$. This is a line, but not a line through the origin.

1.5.18. The solution set of the homogeneous equation is the plane through the origin spanned by the vectors $\boldsymbol{u} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{v} = \begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix}$. The solution set to the inhomogeneous equation is a parallel plane through $\begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$; i.e., the set of vectors of the form $\begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix}$ for real numbers r, s.

1.5.24.

- a) False. Only one entry needs to be nonzero.
- b) True. See Example 2.
- c) True. If **0** is a solution, then $b = A\mathbf{0} = \mathbf{0}$.

- d) True. Example 3 and the following discussion.
- e) False. Theorem 6 applies only to consistent systems.

1.5.26.

Solution 1. If Ax = b has a solution, then the solution is unique if and only if there are no free variables in the corresponding system of equations. This happens if and only if every column of A is a pivot column. This happens if and only if the equation Ax = 0 has only the trivial solution.

Solution 2. By Theorem 6, the solution set of $A\mathbf{x} = \mathbf{b}$ is always either empty or a translation of the solution set of $A\mathbf{x} = \mathbf{0}$. In the case where $A\mathbf{x} = \mathbf{b}$ is consistent, the solution set is a translation of the solution set of $A\mathbf{x} = \mathbf{0}$. In particular, the solution set of $A\mathbf{x} = \mathbf{b}$ consists of a single point iff there is a unique solution to $A\mathbf{x} = \mathbf{0}$.

1.5.30.

- a) Yes. (The set of solutions form a line.)
- b) No.

1.5.32.

- a) Yes. (The set of solutions forms a plane.)
- b) Yes.

1.5.34. $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$