Book Homework #3 Answers Math 217 W11

1.7.24. $\begin{pmatrix} \Box & \star \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \Box \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

1.7.26. $\begin{pmatrix} \Box & \star & \star \\ 0 & \Box & \star \\ 0 & 0 & \Box \\ 0 & 0 & 0 \end{pmatrix}$

1.7.34. True, by Theorem 9

1.7.36. False. For example, take $\boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \boldsymbol{v}_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \boldsymbol{v}_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \boldsymbol{v}_4 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$.

1.7.38. True. Since $\{v_1, v_2, v_3, v_4\}$ is linearly independent, the equation $x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 = 0$ has no nontrivial solutions. In particular, there are no solutions in which $x_4 = 0$, so there can be no nontrivial solutions in x_1, x_2, x_3 to the equation $x_1v_1 + x_2v_2 + x_3v_3 + 0v_4 = 0$. That is, there are no nontrivial solutions in x_1, x_2, x_3 to the equation $x_1v_1 + x_2v_2 + x_3v_3 = 0$. By definition, then, $\{v_1, v_2, v_3\}$ is linearly independent.

1.8.18. From the first figure, we can see that (at least approximately) $\boldsymbol{w} = \boldsymbol{u} + 2\boldsymbol{v}$. Thus $T(\boldsymbol{w}) = T(\boldsymbol{u}) + 2T(\boldsymbol{v})$.

1.8.22.

- a) True. Paragraph following the definition of a linear transformation.
- b) False. The codomain is \mathbb{R}^m . Paragraph preceding Example 1.
- c) False. This is an existence question. Remark about Example 1(d) following the solution.
- d) True. Discussion of the definition of linear transformation.

e) True. Paragraph following eqn (5).

1.8.30. The affine transformation described here maps 0 to b. A linear transformation maps 0 to 0. Thus the transformation can be linear only if b = 0.

1.8.31. Since $\{v_1, v_2, v_3\}$ is linear dependent, there exist scalars c_1, c_2, c_3 not all zero, such that $c_1v_1 + c_2v_2 + c_3v_3 = 0$. Because T is a linear transformation,

$$c_1T(v_1) + c_2T(v_2) + c_3T(v_3) = T(c_1v_1 + c_2v_2 + c_3v_3) = T(0) = 0.$$

Because c_1, c_2, c_3 are not all zero, this says that $\{T(v_1), T(v_2), T(v_3)\}$ is linearly dependent.

1.8.32. T does not respect scalar multiplication by negative scalars.

1.8.34. Suppose that $\{u, v\}$ is linearly independent but that $\{T(u), T(v)\}$ is linearly dependent. Then there exist scalars c, d not both zero such that cT(u) + dT(v) = 0. By linearly of T, we have T(cu + dv) = 0. Thus cu + dv is a solution of T(x) = 0. Since $\{u, v\}$ is linearly independent, this is not a trivial solution.

1.8.36. Take $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^3$, $c, d \in \mathbb{R}$. Then $c\boldsymbol{u} + d\boldsymbol{v} = (cu_1 + dv_1, cu_2 + dv_2, cu_3 + dv_3)$. Then we can directly compute as follows.

$$T(c\mathbf{u} + d\mathbf{v}) = T(cu_1 + dv_1, cu_2 + dv_2, cu_3 + dv_3)$$

= $(cu_1 + dv_1, 0, cu_3 + dv_3)$
= $(cu_1, 0, cu_3) + (dv_1, 0, dv_3)$
= $c(u_1, 0, u_3) + d(v_1, 0, v_3)$
= $cT(\mathbf{u}) + dT(\mathbf{v})$

Thus T is a linear transformation.

1.9.2.
$$\begin{pmatrix} 1 & 4 & -5 \\ 3 & -7 & 4 \end{pmatrix}$$

1.9.4. $\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$

1.9.24.

- a) False. Paragraph preceding Example 2.
- b) True. Theorem 10.
- c) True. Table 1.
- d) False. See definition of one-to-one.
- e) True. Example 5 and its solution.
- 1.9.26. Use Theorem 12. Onto, but not one-to-one.
- **1.9.28.** Again, Theorem 12. a_1, a_2 are independent and span \mathbb{R}^2 . One-to-one and onto.
- **1.9.36.** For all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^p$ and for all scalars c, d, we have

$$T(S(c\boldsymbol{u} + d\boldsymbol{v})) = T(cS(\boldsymbol{u}) + dS(\boldsymbol{v}))$$

= $c(T(S(\boldsymbol{u})) + d(T(S(\boldsymbol{v}))),$

where we are using linearity of S and T, respectively. This shows that $T \circ S$ is linear.