
Book Homework #4 Answers

Math 217 W11

2.1.20. The second column of AB will be A0= 0.

2.1.22. Write B =
(

b1 b2 
 bn

)

, so that the columns of AB are Ab1, Ab2,	 , Abn. Since the bi

are linearly dependent, there exist scalars ci, not all zero, such that c1b1 + 
 + cnbn = 0. Then
columns of AB are related by the same relation. (This uses linearity of matrix-vector multipli-
cation.)

c1(Ab1)+
 + cn(Abn)=A(c1b1+
 + cnbn)=A0= 0

2.1.24. For any b ∈R
m, we have A(Db) = (AD)b= Imb= b, so Db is a solution of Ax= b. In

particular, this system is always consistent. By Theorem 4, A has a pivot position in every row.
Since there cannot be more than one pivot in any column, there are at least as many rows as
columns.

2.1.28. We always have u
T
v = v

T
u. On the other hand, uvT and vu

T are transposes of one
another.

2.2.14. B −C =(B −C)I =(B −C)(DD−1)= ((B −C)D)D−1=OD−1=O, so B=C.

2.2.16. A=AI =A(BB−1)= (AB)B−1, so A is invertible by Theorem 6a,b.

2.2.20.

a) B is invertible because B=X(A−AX)−1 is a product of invertible matrices.

b) We continue to rearrange the matrix equation.

X = B(A−AX)

X = BA−BAX

X +BAX = BA

(I +BA)X = BA

Now BA is invertible, since it is a product of invertible matrices (using part a). Now, by

Exercise 16, I +BA is invertible, and at last we have X =(I +BA)−1BA.

2.2.22. If A is invertible, then Theorem 5 says that the system Ax= b is always consistent. By
Theorem 4, the columns of A span R

4.

2.2.38. D =









1 0

0 0

0 0

0 1









. There is no such matrix C. If there were, then we’d have CA = I, giving

CAx = x for all x ∈ R
4. On the other hand, the colums of A are linearly dependent, so there

exist nonzero vectors x such that Ax= 0, giving C(Ax)=C0= 0� x.

2.3.14. If the diagonal entries are all nonzero, then they can be used as pivots, and the matrix
will be invertible.

If on the other hand there is a zero on the diagonal, then the columns must be linearly depen-
dent (the column with a zero on the diagonal will be a linear combination of the columns fur-
ther to the right), and the matrix cannot be invertible.
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A lower-triangular matrix is invertible iff the diagonal entries are all nonzero.

2.3.20. By the boxed statement under the IMT, E, F are inverses to each other. Thus we have
EF = I =FE. Thus E and F commute.

2.3.29. Since x� Ax is not one-to-one, property (f) in the IMT fails. Thus, by IMT, A is not
invertible, and property (i) fails also, so x � Ax does not maps R

n onto R
n. Since A is not

invertible, Theorem 2.9 implies that x� Ax is not an invertible map.

2.3.30. Since x� Ax is one-to-one, property (f) in the IMT holds. Thus, by IMT, A is invert-
ible, and property (i) holds also, so x � Ax maps R

n onto R
n. Since A is invertible, Theorem

2.9 implies that x� Ax is an invertible map.

2.3.34. The standard matrix of T is A =
(

6 − 8

− 5 7

)

, which is invertible because det A = 2 � 0.

By Theorem 9, T is invertible, and T−1(x)=A−1
x=

1

2

(

7 8

5 6

)

x.

2.3.36. Suppose T maps R
n onto R

n, and let A be the standard matrix of T . Then the
columns of A span R

n by Theorem 1.12. By IMT, A is invertible. By Theorem 2.9, T is invert-
ible, and A−1 is the standard matrix of T−1. Since A−1 is also invertible, by the IMT, its
columns are linearly independent and span R

n. By Theorem 12 applied to T−1, we see T−1 is
one-to-one.

2.3.37. Let A be the standard matrix of T and let B be the standard matrix of U . Then for
all x ∈R

n, ABx = T (U(x)) = x. Since AB represents the identity transformation, AB = I. By
the boxed statement following the IMT, BA= I, so U(T (x)=BAx=x.
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