Book Homework \#5 Answers

Math 217 W11

3.1.14. Use the fourth row and the last column.

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccccc}
6 & 3 & 2 & 4 & 0 \\
9 & 0 & -4 & 1 & 0 \\
8 & -5 & 6 & 7 & 1 \\
3 & 0 & 0 & 0 & 0 \\
4 & 2 & 3 & 2 & 0
\end{array}\right) & =-3 \operatorname{det}\left(\begin{array}{cccc}
3 & 2 & 4 & 0 \\
0 & -4 & 1 & 0 \\
-5 & 6 & 7 & 1 \\
2 & 3 & 2 & 0
\end{array}\right) \\
& =(-3)(-1) \operatorname{det}\left(\begin{array}{ccc}
3 & 2 & 4 \\
0 & -4 & 1 \\
2 & 3 & 2
\end{array}\right) \\
& =(-3)(-1)\left[\left.\begin{array}{cc}
-4 & 1 \\
3 & 2
\end{array}|+2| \begin{array}{cc}
2 & 4 \\
-4 & 1
\end{array} \right\rvert\,\right] \\
& =3[-33+36] \\
& =9
\end{aligned}
$$

3.1.19. $a d-b c \rightsquigarrow b c-a d$: switching the rows negates the determinant.
3.1.20. $a d-b c \rightsquigarrow k a d-k b c$: rescaling the second row by k multiplies the determinant by k.
3.1.21. $-2 \rightsquigarrow-2$: adding a multiple of the first row to the second row does not affect the determinant.
3.1.22. $a d-b c \rightsquigarrow a d-b c$: adding a multiple of the second row to the first row does not affect the determinant.
3.1.23. $-5 \rightsquigarrow-5 k$: rescaling the first row by k multiplies the determinant by k.
3.1.24. $2 a-6 b+3 c \rightsquigarrow-2 a+6 b-3 c$: switching two rows negates the determinant.
3.1.42. The area of the parallelogram is $b c$ (the base is c and the height is b). The determinant of $(\boldsymbol{u} \boldsymbol{v})$ is $-b c$, while the determinant of $(\boldsymbol{v} \boldsymbol{u})$ is $b c$.
3.2.34. Since $P P^{-1}=I$, we have $(\operatorname{det} P)\left(\operatorname{det} P^{-1}\right)=\operatorname{det} I=1$. Then, again using Theorem 6 , we have $\operatorname{det}\left(P A P^{-1}\right)=(\operatorname{det} P)(\operatorname{det} A)\left(\operatorname{det} P^{-1}\right)=\operatorname{det} A$.
3.2.36. $\operatorname{det} A^{4}=\operatorname{det} O=0$, but by Theorem $6 \operatorname{det} A^{4}=(\operatorname{det} A)^{4}$. Thus $\operatorname{det} A=0$, so A is not invertible.
3.2.40. $-2,32,-16,1,-1$
3.2.42. $\operatorname{det}(A+B)=\left|\begin{array}{cc}a+1 & b \\ c & d+1\end{array}\right|=(a+1)(d+1)-b c=a d+a+d+1-b c$. Rearranging this a bit, we obtain $\operatorname{det}(A+B)=(a d-b c)+1+(a+d)=\operatorname{det} A+\operatorname{det} B+(a+d)$. Thus, as desired, $\operatorname{det} A+B=\operatorname{det} A+\operatorname{det} B$ iff $a+d=0$.
3.3.20. The area is given by $\left|\begin{array}{cc}-1 & 4 \\ 3 & -5\end{array}\right||=|5-12|=7$.
3.3.22. The area is given by $\| \begin{array}{cc}6 & -3 \\ 1 & 3\end{array}| |=|18-(-3)|=21$.
3.3.30. If a triangle has vertices at $(0,0),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, then its area is half that of the parallelogram with vertices at $(0,0),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$, which is $\operatorname{det}\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$. Thus the area of the triangle is $\left|\frac{1}{2}\right| \begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}|\mid$.
Since translation does not affect area, we see that area $[R]=\operatorname{area}\left[R-\left(x_{3}, y_{3}\right)\right]$, where $R-\left(x_{3}, y_{3}\right)$ is the translated copy of R whose vertices are at $\left(x_{1}-x_{3}, y_{1}-y_{3}\right),\left(x_{2}-x_{3}, y_{2}-y_{3}\right),(0,0)$. Now we compute as follows.

$$
\begin{aligned}
\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right)\right| & =\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{ccc}
x_{1}-x_{3} & y_{1}-y_{3} & 0 \\
x_{2}-x_{3} & y_{2}-y_{3} & 0 \\
x_{3} & y_{3} & 1
\end{array}\right)\right| \\
& =\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{cc}
x_{1}-x_{3} & y_{1}-y_{3} \\
x_{2}-x_{3} & y_{2}-y_{3}
\end{array}\right)\right| \\
& =\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{cc}
x_{1}-x_{3} & x_{2}-x_{3} \\
y_{1}-y_{3} & y_{2}-y_{3}
\end{array}\right)\right| \\
& =\operatorname{area}(R)
\end{aligned}
$$

