Book Homework \#6 Answers

Math 217 W11

4.1.13.

a) No. There are three vectors in $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
b) There are infinitely many vectors in $\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
c) Yes, $\boldsymbol{w}=\boldsymbol{v}_{1}+\boldsymbol{v}_{2}$.
4.1.14. We can answer this systematically by row reducing ($\boldsymbol{v}_{1} \boldsymbol{v}_{2} \boldsymbol{v}_{3} \boldsymbol{w}$).

$$
\left(\begin{array}{cccc}
1 & 2 & 4 & 8 \\
0 & 1 & 2 & 4 \\
-1 & 3 & 6 & 7
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This tells us that \boldsymbol{w} is not a linear combination of the \boldsymbol{v}_{i}. (We can also see, if somehow we had not yet noticed, that $\boldsymbol{v}_{3}=2 \boldsymbol{v}_{2}$.

4.1.24.

a) True.
b) True. (Blue box following vector space axioms, proof sketched in problem 29. Most importantly, this is not "by definition".)
c) Syntax error. It only makes sense to ask whether a vector space is a subspace of another vector space. Two true, well-formed sentences similar to the given one follow.

- A vector space is always a subspace of itself.
- A subspace of a vector space is always a vector space.
d) False. \mathbb{R}^{2} is not even a subset of \mathbb{R}^{3}.
e) False. Quantifier error. We need $\boldsymbol{u}+\boldsymbol{v} \in H$ for all $\boldsymbol{u}, \boldsymbol{v} \in H$, and we need $c \boldsymbol{u} \in H$ for all $c \in \mathbb{R}, \boldsymbol{u} \in H$.
4.1.32. We can check the three parts of the definition directly.
a) $\mathbf{0} \in H$ and $\mathbf{0} \in K$, so $\mathbf{0} \in H \cap K$
b) Suppose $\boldsymbol{u}, \boldsymbol{v} \in H \cap K$. Then, since H is closed under addition, $\boldsymbol{u}+\boldsymbol{v} \in H$. Since K is closed under addition, $\boldsymbol{u}+\boldsymbol{v} \in K$. Thus $\boldsymbol{u}+\boldsymbol{v} \in H \cap K$.
c) Suppose $\boldsymbol{u} \in H \cap K$ and $c \in \mathbb{R}$. Since H is closed under scalar multiplication, $c \boldsymbol{u} \in H$. Since K is closed under scalar multiplication, $c \boldsymbol{u} \in K$. Thus $c \boldsymbol{u} \in H \cap K$.

This shows that $H \cap K$ is a subspace of V.
Let H be the x-axis in \mathbb{R}^{2} and let K be the y-axis, so that $H \cup K$ looks like a cross. This is not closed under addition. For example, $\binom{1}{0} \in H \cup K$ and $\binom{0}{1} \in H \cup K$, but $\binom{1}{1} \notin H \cup K$. (In general, the union of subspaces of V is almost never a subspace of V. The only time $H \cup K$ is a subspace of V is when one of H, K contains the other, so that $H \cup K$ is just H or K.)

4.1.33.

a) Since $\mathbf{0} \in H$ and $\mathbf{0} \in K, \mathbf{0}=\mathbf{0}+\mathbf{0} \in H+K$. Now, let $\boldsymbol{u}=\boldsymbol{h}+\boldsymbol{k}$ and $\boldsymbol{v}=\boldsymbol{h}^{\prime}+\boldsymbol{k}^{\prime}$ be arbitrary elements of $H+K$, and let $c \in \mathbb{R}$. Then $\boldsymbol{u}+\boldsymbol{v}=\left(\boldsymbol{h}+\boldsymbol{h}^{\prime}\right)+\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) \in H+K$, and also $c \boldsymbol{u}=c \boldsymbol{h}+c \boldsymbol{k} \in H+K$.
b) We already know that H, K, and $H+K$ contain the zero vector in V and are closed under linear combinations, so the only thing to check is that H and K are subsets of $H+$ K. For all $\boldsymbol{h} \in H, \boldsymbol{h}=\boldsymbol{h}+\mathbf{0} \in H+K$. Likewise, for all $\boldsymbol{k} \in K$, we have $\boldsymbol{k}=\mathbf{0}+\boldsymbol{k} \in H+K$. Thus $H \subseteq H+K$ and $K \subseteq H+K$.
4.1.34. Let $\boldsymbol{u}=\boldsymbol{h}+\boldsymbol{k}$ be any element of $H+K$. Then we can write $\boldsymbol{h}=\sum_{i=1}^{p} c_{i} \boldsymbol{u}_{i}$ and $\boldsymbol{k}=$ $\sum_{i=1}^{q} d_{i} \boldsymbol{v}_{i}$ for suitable scalars c_{i}, d_{i}. Then we have

$$
\boldsymbol{u}=\boldsymbol{h}+\boldsymbol{k}=\sum_{i=1}^{p} c_{i} \boldsymbol{u}_{i}+\sum_{i=1}^{q} d_{i} \boldsymbol{v}_{i} \in \operatorname{Span}\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{p}, \boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{q}\right\},
$$

which gives $H+K \subseteq \operatorname{Span}\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{p}, \boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{q}\right\}$.
For the other direction, let \boldsymbol{u} be any element of $\operatorname{Span}\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{p}, \boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{q}\right\}$. Then we can write

$$
\boldsymbol{u}=\sum_{i=1}^{p} c_{i} \boldsymbol{u}_{i}+\sum_{i=1}^{q} d_{i} \boldsymbol{v}_{i}=\left(\sum_{i=1}^{p} c_{i} \boldsymbol{u}_{i}\right)+\left(\sum_{i=1}^{q} d_{i} \boldsymbol{v}_{i}\right) \in H+K
$$

so that $\operatorname{Span}\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{p}, \boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{q}\right\} \subseteq H+K$.
Together, these given $H+K=\operatorname{Span}\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{p}, \boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{q}\right\}$.

