Book Homework #6 Answers

Math 217 W11

4.1.13.

- a) No. There are three vectors in $\{v_1, v_2, v_3\}$.
- b) There are infinitely many vectors in Span $\{v_1, v_2, v_3\}$.
- c) Yes, $w = v_1 + v_2$.
- **4.1.14.** We can answer this systematically by row reducing (v_1 v_2 v_3 w).

$$\left(\begin{array}{cccc} 1 & 2 & 4 & 8 \\ 0 & 1 & 2 & 4 \\ -1 & 3 & 6 & 7 \end{array} \right) \rightsquigarrow \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

This tells us that w is not a linear combination of the v_i . (We can also see, if somehow we had not yet noticed, that $v_3 = 2v_2$.

4.1.24.

- a) True.
- b) True. (Blue box following vector space axioms, proof sketched in problem 29. Most importantly, this is not "by definition".)
- c) Syntax error. It only makes sense to ask whether a vector space is a subspace of another vector space. Two true, well-formed sentences similar to the given one follow.
 - A vector space is always a subspace of itself.
 - A subspace of a vector space is always a vector space.
- d) False. \mathbb{R}^2 is not even a subset of \mathbb{R}^3 .
- e) False. Quantifier error. We need $u + v \in H$ for all $u, v \in H$, and we need $cu \in H$ for all $c \in \mathbb{R}, u \in H$.
- **4.1.32.** We can check the three parts of the definition directly.
 - a) $\mathbf{0} \in H$ and $\mathbf{0} \in K$, so $\mathbf{0} \in H \cap K$
 - b) Suppose $u, v \in H \cap K$. Then, since H is closed under addition, $u + v \in H$. Since K is closed under addition, $u + v \in K$. Thus $u + v \in H \cap K$.
 - c) Suppose $u \in H \cap K$ and $c \in \mathbb{R}$. Since H is closed under scalar multiplication, $cu \in H$. Since K is closed under scalar multiplication, $cu \in K$. Thus $cu \in H \cap K$.

This shows that $H \cap K$ is a subspace of V.

Let H be the x-axis in \mathbb{R}^2 and let K be the y-axis, so that $H \cup K$ looks like a cross. This is not closed under addition. For example, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in H \cup K$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \in H \cup K$, but $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \notin H \cup K$. (In general, the union of subspaces of V is almost never a subspace of V. The only time $H \cup K$ is a subspace of V is when one of H, K contains the other, so that $H \cup K$ is just H or K.)

1

4.1.33.

- a) Since $\mathbf{0} \in H$ and $\mathbf{0} \in K$, $\mathbf{0} = \mathbf{0} + \mathbf{0} \in H + K$. Now, let $\mathbf{u} = \mathbf{h} + \mathbf{k}$ and $\mathbf{v} = \mathbf{h}' + \mathbf{k}'$ be arbitrary elements of H + K, and let $c \in \mathbb{R}$. Then $\mathbf{u} + \mathbf{v} = (\mathbf{h} + \mathbf{h}') + (\mathbf{k} + \mathbf{k}') \in H + K$, and also $c\mathbf{u} = c\mathbf{h} + c\mathbf{k} \in H + K$.
- b) We already know that H, K, and H+K contain the zero vector in V and are closed under linear combinations, so the only thing to check is that H and K are *subsets* of H+K. For all $\mathbf{h} \in H$, $\mathbf{h} = \mathbf{h} + \mathbf{0} \in H + K$. Likewise, for all $\mathbf{k} \in K$, we have $\mathbf{k} = \mathbf{0} + \mathbf{k} \in H + K$. Thus $H \subseteq H + K$ and $K \subseteq H + K$.
- **4.1.34.** Let u = h + k be any element of H + K. Then we can write $h = \sum_{i=1}^{p} c_i u_i$ and $k = \sum_{i=1}^{q} d_i v_i$ for suitable scalars c_i, d_i . Then we have

$$oldsymbol{u} = oldsymbol{h} + oldsymbol{k} = \sum_{i=1}^p \, c_i oldsymbol{u}_i + \sum_{i=1}^q \, d_i oldsymbol{v}_i \in \operatorname{Span} \{oldsymbol{u}_1, \cdots, oldsymbol{u}_p, oldsymbol{v}_1, \cdots, oldsymbol{v}_q \},$$

which gives $H + K \subseteq \text{Span}\{\boldsymbol{u}_1, \dots, \boldsymbol{u}_p, \boldsymbol{v}_1, \dots, \boldsymbol{v}_q\}$.

For the other direction, let u be any element of $\mathrm{Span}\{u_1,\cdots,u_p,v_1,\cdots,v_q\}$. Then we can write

$$u = \sum_{i=1}^{p} c_i u_i + \sum_{i=1}^{q} d_i v_i = \left(\sum_{i=1}^{p} c_i u_i\right) + \left(\sum_{i=1}^{q} d_i v_i\right) \in H + K,$$

so that $\operatorname{Span}\{\boldsymbol{u}_1,\cdots,\boldsymbol{u}_p,\boldsymbol{v}_1,\cdots,\boldsymbol{v}_q\}\subseteq H+K.$

Together, these given $H + K = \text{Span}\{u_1, \dots, u_p, v_1, \dots, v_q\}$.