Book Homework \#8 Answers

Math 217 W11

4.5.12. The matrix $\left(\begin{array}{cccc}1 & -3 & -8 & -3 \\ -2 & 4 & 6 & 0 \\ 0 & 1 & 5 & 7\end{array}\right)$ row-reduces to $\left(\begin{array}{llll}1 & 0 & 7 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$, so the columns of the matrix span a three-dimensional space (in fact they span \mathbb{R}^{3}).
4.5.14. The nullspace and columnspace of A are each three-dimensional. (There are three columns with pivots and three columns without.)
4.5.22. In the standard coordinates for \mathbb{P}_{3}, the proposed basis polynomials have coordinates $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}2 \\ -4 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}6 \\ -18 \\ 9 \\ -1\end{array}\right)$. These coordinate vectors form a invertible triangular matrix, so they are a basis of \mathbb{R}^{4}. The polynomials they represent is a basis of \mathbb{P}_{3}.

4.5.24.

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & -1 & -4 \\
0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{c}
7 \\
-8 \\
3
\end{array}\right)=\left(\begin{array}{c}
5 \\
-4 \\
3
\end{array}\right)
$$

4.5.26. Let $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of H. Then the basis elements are $n=\operatorname{dim} V$ independent elements of V, so by the Basis Theorem, this basis of H is a basis of V, and $H=V$.
4.6.4. The rank of A is 3 , and $\operatorname{dim} \operatorname{Nul} A$ (the nullity) is also 3 .

Basis for $\operatorname{Col} A:\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 2 \\ -1 \\ -3 \\ -2\end{array}\right),\left(\begin{array}{c}7 \\ 10 \\ 1 \\ -5 \\ 0\end{array}\right)\right\}$.
Basis for Row $A:\{(1,1,-3,7,9,-9),(0,1,-1,3,4,-3),(0,0,0,1,-1,-2)\}$.
Basis for Nul $A:\left\{\left(\begin{array}{l}3 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-9 \\ -4 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}9 \\ 3 \\ 0 \\ 2 \\ 1 \\ 0\end{array}\right)\right\}$.
4.6.10. The column space is one-dimensional.

4.6.18.

a) False. The columns of a (row) echelon form of A are not generally in the column space of A.
b) False. Row operations preserve the linear relations among the columns.
c) True. Either use the rank-nullity theorem, or our recipe for constructing our basis of $\mathrm{Nul} A$.
d) True.
e) True. Row operations preserve the row space.
4.6.20. If we represent this system in the form $A \boldsymbol{x}=\boldsymbol{b}$, then A is matrix with 8 columns. Since the solution set has two free variables, $\mathrm{Nul} A$ is two-dimensional. By Theorem $14, A$ has rank 6. Since the columnspace is a 6 -dimensional subspace of $\mathbb{R}^{6}, \operatorname{Col} A=\mathbb{R}^{6}$. Thus $A \boldsymbol{x}=\boldsymbol{b}^{\prime}$ would be consistent for any \boldsymbol{b}^{\prime}.
4.6.22. Write the system in the form $A \boldsymbol{x}=\mathbf{0}$. Then A is a 10×12 matrix. The rank of A is the dimension of a subspace of \mathbb{R}^{10}, so the rank is at most 10 . By Theorem 14 , the dimension of $\mathrm{Nul} A$, which is also the number of free variables, is at least two. Thus the solution space cannot be spanned by a single vector.
4.6.30. $A \boldsymbol{x}=\boldsymbol{b}$ is consistent $\Leftrightarrow \boldsymbol{b} \in \operatorname{Col} A \Leftrightarrow \operatorname{Col} A=\operatorname{Col}\left[\begin{array}{ll}A & \boldsymbol{b}\end{array}\right] \Leftrightarrow \operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & \boldsymbol{b}\end{array}\right]$.

