Book Homework #9 Answers

Math 217 W11

4.7.6.

a)
$$\begin{pmatrix} 2 & 0 & 0 \\ -1 & 3 & -3 \\ 1 & 1 & 2 \end{pmatrix}$$

b)
$$[\boldsymbol{f}_1 - 2\boldsymbol{f}_2 + 2\boldsymbol{f}_3]_{\mathcal{B}} = \begin{pmatrix} 2 \\ -13 \\ 3 \end{pmatrix}$$

4.7.10. The change-of-coordinates matrix from \mathcal{B} to \mathcal{C} is $\begin{pmatrix} 7 & 2 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 8 & 3 \\ -5 & -2 \end{pmatrix}$. The change-of-coordinates matrix in the other direction is the inverse, $\begin{pmatrix} 2 & 3 \\ -5 & -8 \end{pmatrix}$.

4.7.12.

- a) True. Basis change matrices are invertible.
- b) False. This matrix P changes coordinates in the other direction.

4.7.14. The change-of-coordinates matrix is $\begin{pmatrix} 1 & 2 & 1 \ 0 & 1 & 2 \ -3 & -5 & 0 \end{pmatrix}$. The inverse of this matrix is $\begin{pmatrix} 10 & -5 & 3 \ -6 & 3 & -2 \ 3 & -1 & 1 \end{pmatrix}$, which gives us the following (if we could not see it by inspection).

$$t^2 = 3(1-2t+t^2) - 2(2+t-5t^2) + 1(1+2t)$$

5.1.16. $A - 4I = \begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. The nullspace of the matrix is one-dimensional, spanned by the vector $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

- **5.1.18.** The eigenvalues are 4, 0, -3. (Theorem 1.)
- **5.1.24.** The 2×2 identity matrix has only the eigenvalue 1.
- **5.1.26.** Suppose that $A^2 = O$, and suppose λ is an eigenvalue of A. Let \boldsymbol{v} be an eigenvector attached to λ . Then $A^2\boldsymbol{v} = A(\lambda\boldsymbol{v}) = \lambda(A\boldsymbol{v}) = \lambda^2\boldsymbol{v}$, but $A^2\boldsymbol{v} = O\boldsymbol{v} = \boldsymbol{0}$. Thus $\lambda = 0$.
- **5.1.32.** Typically, 1 is the only real eigenvalue of T; the axis of rotation is the 1-eigenspace. If the rotation happens to be a half-turn, then -1 is also an eigenvalue; the plane through the origin perpendicular to the axis of rotation is the (-1)-eigenspace. (Otherwise, the other eigenvalues are complex.)

1

5.4.10.

a) Let $p = p(t) = a + bt + ct^2 + dt^3$, $q = q(t) = e + ft + gt^2 + ht^3$. Then we compute.

$$T(\mathbf{p}) = \begin{pmatrix} a - 3b + 9c - 27d \\ a - b + c - d \\ a + b + c + d \\ a + 3b + 9c + 27d \end{pmatrix} \qquad T(\mathbf{q}) = \begin{pmatrix} e - 3f + 9g - 27h \\ e - f + g - h \\ e + f + g + h \\ e + 3f + 9g + 27h \end{pmatrix}$$

$$(r\mathbf{p} + s\mathbf{q})(t) = (ra + se) + (rb + sf)t + (rc + sg)t^2 + (rd + sh)t^3$$

$$T(r\boldsymbol{p}+s\boldsymbol{q}) = \begin{pmatrix} (ra+se) - 3(rb+sf) + 9(rc+sg) - 27(rd+sh) \\ (ra+se) - (rb+sf) + (rc+sg) - (rd+sh) \\ (ra+se) + (rb+sf) + (rc+sg) + (rd+sh) \\ (ra+se) + 3(rb+sf) + 9(rc+sg) + 27(rd+sh) \end{pmatrix} = rT(\boldsymbol{p}) + sT(\boldsymbol{q})$$

b) The following matrix represents T in the standard coordinates.

$$\left(\begin{array}{cccc}
1 & -3 & 9 & -27 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
1 & 3 & 9 & 27
\end{array}\right)$$

5.4.12.

$$\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}^{-1} = \frac{1}{5} \begin{pmatrix} 17 & 9 \\ -16 & -7 \end{pmatrix}$$

- **5.4.16.** The characteristic polynomial of A is $\lambda^2 5\lambda$, so the eigenvalues are 0 and 5. The 0-eigenspace is spanned by $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$; the 5-eigenspace is spanned by $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$. The matrix of T relative to the basis $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\}$ is $\begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}$.
- **5.4.20.** Suppose A is similar to B. There exists an invertible matrix P such that $B = PAP^{-1}$. Then $B^2 = (PAP^{-1})(PAP^{-1}) = PA(P^{-1}P)AP^{-1} = PA^2P^{-1}$, so A^2 is similar to B^2 .
- **5.4.24.** Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be defined by T(x) = Ax. Then A represents T in standard coordinates, and B represents T in another coordinate system. Then $\operatorname{rank}(A) = \dim \operatorname{im} T = \operatorname{rank}(B)$.