Book Homework \#9 Answers

Math 217 W11

4.7.6.
a) $\left(\begin{array}{ccc}2 & 0 & 0 \\ -1 & 3 & -3 \\ 1 & 1 & 2\end{array}\right)$
b) $\left[\boldsymbol{f}_{1}-2 \boldsymbol{f}_{2}+2 \boldsymbol{f}_{3}\right]_{\mathcal{B}}=\left(\begin{array}{c}2 \\ -13 \\ 3\end{array}\right)$
4.7.10. The change-of-coordinates matrix from \mathcal{B} to \mathcal{C} is $\left(\begin{array}{cc}7 & 2 \\ -2 & -1\end{array}\right)\left(\begin{array}{ll}4 & 5 \\ 1 & 2\end{array}\right)^{-1}=\left(\begin{array}{cc}8 & 3 \\ -5 & -2\end{array}\right)$. The change-of-coordinates matrix in the other direction is the inverse, $\left(\begin{array}{cc}2 & 3 \\ -5 & -8\end{array}\right)$.
4.7.12.
a) True. Basis change matrices are invertible.
b) False. This matrix P changes coordinates in the other direction.
4.7.14. The change-of-coordinates matrix is $\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 2 \\ -3 & -5 & 0\end{array}\right)$. The inverse of this matrix is
$\left(\begin{array}{lll}10 & -5 & 3\end{array}\right)$ $\left(\begin{array}{ccc}10 & -5 & 3 \\ -6 & 3 & -2 \\ 3 & -1 & 1\end{array}\right)$, which gives us the following (if we could not see it by inspection).

$$
t^{2}=3\left(1-2 t+t^{2}\right)-2\left(2+t-5 t^{2}\right)+1(1+2 t)
$$

5.1.16. $A-4 I=\left(\begin{array}{cccc}-1 & 0 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. The nullspace of the matrix is one-dimensional, spanned by
the vector $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$.
5.1.18. The eigenvalues are $4,0,-3$. (Theorem 1.)
5.1.24. The 2×2 identity matrix has only the eigenvalue 1 .
5.1.26. Suppose that $A^{2}=O$, and suppose λ is an eigenvalue of A. Let \boldsymbol{v} be an eigenvector attached to λ. Then $A^{2} \boldsymbol{v}=A(\lambda \boldsymbol{v})=\lambda(A \boldsymbol{v})=\lambda^{2} \boldsymbol{v}$, but $A^{2} \boldsymbol{v}=O \boldsymbol{v}=\mathbf{0}$. Thus $\lambda=0$.
5.1.32. Typically, 1 is the only real eigenvalue of T; the axis of rotation is the 1 -eigenspace. If the rotation happens to be a half-turn, then -1 is also an eigenvalue; the plane through the origin perpendicular to the axis of rotation is the (-1)-eigenspace. (Otherwise, the other eigenvalues are complex.)

5.4.10.

a) Let $\boldsymbol{p}=\boldsymbol{p}(t)=a+b t+c t^{2}+d t^{3}, \boldsymbol{q}=\boldsymbol{q}(t)=e+f t+g t^{2}+h t^{3}$. Then we compute.

$$
\begin{gathered}
T(\boldsymbol{p})=\left(\begin{array}{c}
a-3 b+9 c-27 d \\
a-b+c-d \\
a+b+c+d \\
a+3 b+9 c+27 d
\end{array}\right) \quad T(\boldsymbol{q})=\left(\begin{array}{c}
e-3 f+9 g-27 h \\
e-f+g-h \\
e+f+g+h \\
e+3 f+9 g+27 h
\end{array}\right) \\
(r \boldsymbol{p}+s \boldsymbol{q})(t)=(r a+s e)+(r b+s f) t+(r c+s g) t^{2}+(r d+s h) t^{3} \\
T(r \boldsymbol{p}+s \boldsymbol{q})=\left(\begin{array}{c}
(r a+s e)-3(r b+s f)+9(r c+s g)-27(r d+s h) \\
(r a+s e)-(r b+s f)+(r c+s g)-(r d+s h) \\
(r a+s e)+(r b+s f)+(r c+s g)+(r d+s h) \\
(r a+s e)+3(r b+s f)+9(r c+s g)+27(r d+s h)
\end{array}\right)=r T(\boldsymbol{p})+s T(\boldsymbol{q})
\end{gathered}
$$

b) The following matrix represents T in the standard coordinates.

$$
\left(\begin{array}{cccc}
1 & -3 & 9 & -27 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
1 & 3 & 9 & 27
\end{array}\right)
$$

5.4.12.

$$
\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
3 & 4 \\
-1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)^{-1}=\frac{1}{5}\left(\begin{array}{cc}
17 & 9 \\
-16 & -7
\end{array}\right)
$$

5.4.16. The characteristic polynomial of A is $\lambda^{2}-5 \lambda$, so the eigenvalues are 0 and 5 . The $0-$ eigenspace is spanned by $\binom{3}{1}$; the 5 -eigenspace is spanned by $\binom{2}{-1}$. The matrix of T relative to the basis $\left\{\binom{3}{1},\binom{2}{-1}\right\}$ is $\left(\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right)$.
5.4.20. Suppose A is similar to B. There exists an invertible matrix P such that $B=P A P^{-1}$. Then $B^{2}=\left(P A P^{-1}\right)\left(P A P^{-1}\right)=P A\left(P^{-1} P\right) A P^{-1}=P A^{2} P^{-1}$, so A^{2} is similar to B^{2}.
5.4.24. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be defined by $T(\boldsymbol{x})=A \boldsymbol{x}$. Then A represents T in standard coordinates, and B represents T in another coordinate system. Then $\operatorname{rank}(A)=\operatorname{dim} \operatorname{im} T=\operatorname{rank}(B)$.

