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Scores

Midterm 2 Math 217-W11, Linear Algebra

Directions. You have 110 minutes to complete the following 8 problems. A complete answer will always
include some kind of work or justification, even for the problems which are not explicitly ”formal proofs”.
You are not permitted to use any notecards, calculators, abaci, electronic devices of any sort, koalas, nor
kangaroos. There are a total of 140 points possible on the exam, representing 17.5% of your course grade.

1. (15 pt) Let T be the linear transformation R3 → R3 with matrix

A =

 0 1 0
0 1 0
−1 1 1

 .
(a) Compute the dimension of the kernel of T and a basis for the kernel.

The kernel of T is the nullspace of A, so we row reduce A to find1 0 −1
0 1 0
0 0 0

 .
Hence a basis for the kernel consists of the one vector1

0
1

 ,
which means that the kernel of T is one-dimensional.

(b) Compute the rank of A and a basis for the image of T .

We already row reduced A and we found two pivots, which means that the rank of A is 2.

The image of T is the column space of A and a basis for that space consists of the first two
columns of A:  0

0
−1

 ,
1

1
1

 .



2. (15 pt) Let

A =

[
−10 −18

9 17

]
.

(a) Compute the eigenvalues of A.

The characteristic equation of A is

det(A− λI) =

∣∣∣∣−10− λ −18
9 17− λ

∣∣∣∣ = λ2 − 7λ− 8.

The roots of this equation are −1 and 8, which are therefore the eigenvalues of A.

(b) Compute a basis for each eigenspace of A.

For the eigenvalue −1, the eigenspace is the nullspace of[
−9 −18
9 18

]
∼
[
1 2
0 0

]
.

Therefore a basis for this eigenspace consists of the vector

[
−2
1

]
, for example.

For the eigenvalue 8, the eigenspace is the nullspace of[
−18 −18

9 9

]
∼
[
1 1
0 0

]
.

Therefore a basis for this eigenspace consists of the vector

[
−1
1

]
, for example.

(c) Compute a matrix B such that B3 = A.

We know that A = PDP−1 where D =

[
−1 0
0 8

]
and P =

[
−2 −1
1 1

]
. Consider the diagonal

matrix E =

[
−1 0
0 2

]
. Note that E3 = D and hence B3 = A where B = PEP−1. Thus, the

matrix

B =

[
−2 −1
1 1

] [
−1 0
0 2

] [
−1 −1
1 2

]
=

[
−4 −6
3 5

]
works!



3. (15 pt) Let T : P2 → R3 be defined by

T (p(t)) =

p(1)
p(2)
p(3)


for every polynomial p(t) = a2t

2 + a1t+ a0 in P2.

(a) Show that T is a linear transformation.

We must show that T ((p + q)(t)) = T (p(t)) + T (q(t)) and T ((cp)(t)) = cT (p(t)) hold for all
polynomials p(t) and q(t) in P2 and every scalar c ∈ R.

Both equalities are immediate since (p+ q)(t) is defined to equal p(t) + q(t) and (cp)(t) is defined
to equal c(p(t)) for every value of t.

(b) Find a matrix M such that T (p(t)) = M [p(t)]B where B = {1, t, t2}.

Write p(t) = a2t
2 + a1t+ a0 so that [p(t)]B =

a0a1
a2

. Then

p(1)
p(2)
p(3)

 =

 a2 + a1 + a0
a24 + a12 + a0
a29 + a13 + a0

 =

1 1 1
1 2 4
1 3 9

a0a1
a2

 ,

which shows that M =

1 1 1
1 2 4
1 3 9

 works.

(c) Show that for all c1, c2, c3 ∈ R there is a polynomial p(t) ∈ P2 such that p(1) = c1, p(2) = c2, and
p(3) = c3.

We are asked to solve the equation T (p(t)) =

c1c2
c3

 for the polynomial p(t) = a2t
2 + a1t+ a0. By

part (b), this equation is equivalent to the matrix equationc1c2
c3

 =

1 1 1
1 2 4
1 3 9

a0a1
a2

 .
This equation always has a solution since the matrix M is invertible.



4. (15 pt) Let V be a vector space (not necessarily finite-dimensional), and let 0 be the zero vector of V .

(a) Suppose that w ∈ V is a vector such that w + v = v for all v ∈ V . Prove that w = 0. That is,
prove that the zero vector is the unique vector in V that satisfies its defining property.

By Axiom 5 (page 217) we know that there is a vector −v such that v + (−v) = 0. Adding −v
to both sides of w + v = v, we obtain

(w + v) + (−v) = v + (−v).

The right hand side equals 0 by the defining property of −v. For the left hand side, we have

(w + v) + (−v) = w + (v + (−v))

by Axiom 3. Since v + (−v) = 0, we then see that

w + (v + (−v)) = w + 0 = w

by Axiom 4. Putting things together, we obtain that w = 0.

(b) Suppose that v ∈ V , and that w ∈ V is a vector such that v+w = 0. Prove that w = −v. That
is, prove that −v is the unique vector in V that satisfies its defining property.

We know by Axiom 5 that v + (−v) = 0. Adding −v to both sides of v + w = 0, we obtain

(−v) + (v + w) = (−v) + 0.

The right hand side equals −v by Axiom 4. For the left hand side, we have

(−v) + (v + w) = ((−v) + v) + w = (v + (−v)) + w

by Axioms 3 and 2. Since v + (−v) = 0 by Axiom 5, we further obtain

(v + (−v)) + w = 0 + w = w + 0 = w

by Axioms 2 and 4. Putting things together, we obtain w = −v.



5. (30 pt) Decide whether each of these statements is true or false. Justify your answers with short
explanations or counterexamples.

(a) If A and B both have the characteristic polynomial −λ3 + 7λ2 − 10λ, then A and B are similar
matrices.

True. The characteristic polynomial has three distinct roots: 0, 2, 5. Therefore A and B are both

similar to the diagonal matrix

0 0 0
0 2 0
0 0 5

, which means that they are also similar to eachother.

(b) If V and W are vector spaces of dimension n and T : V →W is a one-to-one linear transformation,
then T is onto.

True. Because T is one-to-one, the dimension of the image of T must be n. Since W has dimension
n, the image of T must equal W .

(c) If A is an n×n matrix and x,y are two eigenvectors of A, then x+y is also an eigenvector of A.

False. Take A =

[
1 0
0 −1

]
. Then x =

[
1
0

]
and y =

[
0
1

]
are both eigenvectors of A, but x + y is

not an eigenvector of A since

A(x + y) =

[
1 0
0 −1

] [
1
1

]
=

[
1
−1

]
is not a multiple of x + y.



(d) If P is a stochastic matrix, then 1 is an eigenvalue of PT . (Recall that a square matrix is stochastic
if every column of it is a probability vector.)

True. The easiest way to prove this is to show that the vector j =

1
...
1

 is an eigenvector of PT

with eigenvalue 1. Indeed, the coordinates of PT j are simply the sum of the entries of each row of
PT . Since the rows of PT are probability vectors, the sum of these entries is always 1. Therefore
PT j = j, which shows that j is an eigenvector with eigenvalue 1.

(e) If x is an eigenvector of a matrix A, then x is also an eigenvector of A3.

True. Suppose that Ax = λx. Then

A3x = A2(Ax) = A2(λx) = λA2x = λA(Ax) = λA(λx) = λ2Ax = λ3x,

which shows that x is an eigenvector of A3 with eigenvalue λ3.

(f) There is a 2× 4 matrix A with rank 1 and

Nul(A) = Span




1
0
0
1

 ,


1
0
1
0

 ,


1
1
0
0

 ,


3
1
1
1


 .

True. An example of such a matrix is

A =

[
1 −1 −1 −1
0 0 0 0

]
.

Indeed, a basis for the eigenspace of this matrix consists of the three vectors
1
0
0
1

 ,


1
0
1
0

 ,


1
1
0
0

 ,
which is also a basis of

Span




1
0
0
1

 ,


1
0
1
0

 ,


1
1
0
0

 ,


3
1
1
1




since the third spanning vector is redundant.



6. (20 pt)

(a) Give an example of a real n× n matrix A with eigenvalues −1+i
√
3

2 and −1−i
√
3

2 .

Any real 2× 2 matrix with characteristic equation(
−1 + i

√
3

2
− λ

)(
−1− i

√
3

2
− λ

)
= λ2 + λ+ 1

will do. One such matrix is

[
0 1
−1 −1

]
.

(b) Give a complete list of all diagonalizable matrices with characteristic polynomial (λ − 2)4. You
must prove your list is complete.

One such matrix is the diagonal matrix

2I4×4 =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 .
Indeed, any diagonalizable matrix with characteristic polynomial (λ−2)4 will be similar to this one.
However, if P is any 4× 4 invertible matrix then P (2I4×4)P−1 = 2PI4×4P

−1 = 2PP−1 = 2I4×4.
Therefore 2I4×4 is the only diagonalizable matrix with characteristic polynomial (λ− 2)4.



(c) Find the algebraic multiplicities, and the dimension of the eigenspaces, of all the eigenvalues of
the linear transformation D : P2 → P2 which sends each polynomial p(t) = a2t

2 + a1t+ a0 in P2

to its derivative p′(t) = 2a2t+ a1.

The standard basis for P2 is B = {1, t, t2}. The B-matrix of D is

[D]B =
[
[D(1)]B [D(t)]B [D(t2)]B

]
=

0 1 0
0 0 2
0 0 0

 .
Since this matrix is upper triangular, we can read off the eigenvalues of D: 0 is the only eigenvalue,
with algebraic multiplicity 3.

Since the nullspace of [D]B has basis

1
0
0

, we see that the only eigenvectors of D are the nonzero

constant polynomials. Therefore, the eigenspace of D with eigenvalue 0 is one-dimensional.



7. (15 pt) Let B = {b1,b2,b3} be a basis for R3. Suppose that A and B are 3 × 3 matrices such that
b1,b2,b3 are eigenvectors of both A and B. Show that AB = BA.

Let P =
[
b1 b2 b3

]
. Then

A = PDP−1, B = PEP−1

where

D =

λ1 0 0
0 λ2 0
0 0 λ3

 , E =

µ1 0 0
0 µ2 0
0 0 µ3

 .
Then

AB = (PDP−1)(PEP−1) = PDEP−1 = PEDP−1 = (PDP−1)(PEP−1) = BA,

since

DE =

λ1µ1 0 0
0 λ2µ2 0
0 0 λ3µ3

 = ED.



8. (15 pt) Let A be an n × n matrix which is not invertible, and define Kr to be the nullspace of Ar.
That is, K1 = Nul(A), K2 = Nul(A2), etc.

(a) Prove that, for each j = 1, 2, 3, . . ., Kj is a subspace of Kj+1, so that

K1 ⊆ K2 ⊆ K3 ⊆ K4 ⊆ · · · .

We need to show that Kj ⊆ Kj+1. So suppose x ∈ Kj , that is Ajx = 0. Then

Aj+1x = A(Ajx) = A0 = 0,

which shows that x ∈ Kj+1.

(b) Prove that, if for some r we have Kr = Kr+1, then Kr = Kn for all n ≥ r.
Suppose that Kr = Kr+1. We prove by induction on n ≥ 1 that Kr = Kr+n.

The base case n = 1 is given to us!

For the induction step, suppose we have shown that Kr = Kr+n. To show that Kr = Kr+n+1 we
can show instead that Kr+n = Kr+n+1. We already know that Kr+n ⊆ Kr+n+1 so it suffices to
show that Kr+n+1 ⊆ Kr+n.

Suppose that x ∈ Kr+n+1, that is Ar+n+1x = 0. Then Ar+1(Anx) = 0, which means that
Anx ∈ Kr+1. Since Kr+1 = Kr, we conclude that Anx ∈ Kr and hence Ar(Anx) = 0. Since
ArAn = An+r, we conclude that x ∈ Kn+r.


