(1) Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 0 & -1 & 0 \\ 3 & 2 & 2 & 0 \\ -1 & 2 & 4 & 0 \end{bmatrix}$$
.
(a) Compute the reduced row echelon

(a) Compute the reduced row echelon form of A.

- (b) Find a basis for ker(A) and for Im(A).
- (2) Let W be the plane x z = 0 in \mathbb{R}^3 .
 - (a) Find an orthonormal basis for W.
 - (b) Find the standard matrix R for reflections of vectors over W.
 - (c) Diagonalize R (Hint: try to understand R from geometry).
 - (d) Is R invertible?

(3) Suppose Q is a 12 × 12 orthogonal matrix and $\mathbf{x} = \begin{bmatrix} 1\\1\\1\\\vdots\\1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1\\-1\\1\\\vdots\\-1 \end{bmatrix}$ in \mathbb{R}^{12} . Find $||Q\mathbf{x}||$ and $\langle Q\mathbf{x}, Q\mathbf{y} \rangle$.

- (4) If $\{\mathbf{u}, \mathbf{v}\}$ is an orthogonal set in \mathbb{R}^{14} , Q is an orthogonal matrix in $M_{14\times 14}$, and the distance from \mathbf{u} to $-\mathbf{v}$ is 4, compute the distance from $Q\mathbf{u}$ to $Q\mathbf{v}$.
- (5) In the *QR* factorization of $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & 0 \end{bmatrix}$ (where $\sin(\theta) \neq 0$), find *Q* and check that $Q^T = Q^{-1}$.
- (6) Let A be a 2×2 matrix. Suppose A has an eigenvector $\begin{bmatrix} 1\\1 \end{bmatrix}$ with eigenvalue -2 and another $\begin{bmatrix} 1\\1 \end{bmatrix}$
 - eigenvector $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ with eigenvalue 3.
 - (a) Find A.
 - (b) Find a closed formula for A^n where n is a positive integer.
- (7) Let Poly_1 be the space of all linear functions, i.e. functions of the form f(x) = ax + b, where a, b are real numbers. Consider the linear transformation $T : \mathsf{Poly}_1 \to \mathsf{Poly}_1$ that takes f to -3f' + f.
 - (a) Find the matrix of T relative to the standard basis $\{1, x\}$.
 - (b) Find the matrix of T relative to the basis $\{1 x, 1 + x\}$.
 - (c) What are the determinants of those matrices? Is the transformation invertible?
- (8) (For this problem, imagine that there's generous partial credit for doing the parts for a single example $\mathbf{u} \in \mathbb{R}^2$.)

Let $\mathbf{u} \in \mathbb{R}^n$ be a column vector with unit length and define $H = I - \mathbf{u}\mathbf{u}^T$. (Not $\mathbf{u}^T\mathbf{u}$!)

- (a) Prove that H is symmetric and $H^2 = H$.
- (b) Prove that **u** is an eigenvector and find its corresponding eigenvalue.
- (c) Prove that whenever $\mathbf{v} \perp \mathbf{u}$, then \mathbf{v} is also an eigenvector.

- (d) Prove that H is diagonalizable.
- (9) Recall that the *trace* of a square matrix is the sum of the entries on the main diagonal. Prove that similar square matrices have the same trace.

(10) Give an example if possible. If not, say why not.

- (a) A 5×4 matrix with with no zero entries with rank and nullity both 2.
- (b) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ for which $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 1 \end{bmatrix}$ are eigenvectors.
- (c) A 2 × 3 matrix Q such that $Q^T Q = \begin{bmatrix} 6 & 0 \\ 0 & 3 \end{bmatrix}$.
- (d) A linear transformation $T : \operatorname{Poly}_2 \to \mathbb{R}^3$ such that T(x) = 0 and T is onto. (e) A linear transformation $T : \mathbb{R}^3 \to \operatorname{Poly}_2$ such that $T(e_1) = x^2 + x + 1$ and T is onto.

(11) Short proofy problems.

- (a) Consider $M_{2\times 2}$ with the standard basis \mathcal{Q} , and $T: M_{2\times 2} \to M_{2\times 2}$ be given by swapping rows. Prove that T is linear and find its Q-matrix.
- (b) Let λ be an eigenvalue of a square matrix A. Show that $\lambda^3 + 5\lambda + 1$ is an eigenvalue of the matrix $A^3 + 5A + I$.
- (c) Find all possible determinants of all orthogonal $n \times n$ matrices for all n.
- (d) Let V be a vector space and $S, T: V \to V$ be linear transformations such that **x** is an eigenvector for both S and T. Prove that \mathbf{x} is also an eigenvector for $S \circ T$.
- (e) Let $H \subset K \subset \mathbb{R}^n$ be subspaces. Prove that $K^{\perp} \subset H^{\perp}$.
- (f) Show that if $\mathbf{w}, \mathbf{v} \in V$ are vectors such that $\langle \mathbf{w}, \mathbf{x} \rangle = \langle \mathbf{v}, \mathbf{x} \rangle$ for all $\mathbf{x} \in V$, then $\mathbf{w} = \mathbf{v}$.
- (g) Suppose $A \in M_{4\times 4}$ has complex eigenvalues $\lambda = 3 + i$ and $\lambda = 4 + 2i$. Show that A has no eigenvectors in \mathbb{R}^4 .
- (12) Grammar check. Meaningful/nonsense? If meaningful, true/false? If nonsense or false, replace with a similar true statement.
 - (a) The square of a vector is always nonnegative.
 - (b) If W is a two-dimensional subspace of \mathbb{R}^3 , then W^{\perp} has one element.
 - (c) If an elementary matrix is applied to every vector in a basis \mathcal{B} for \mathbb{R}^n , then the output vectors also form a basis.
 - (d) If $A, B \in M_{2 \times 2}$ satisfy AB = 0, then BA = I.
 - (e) If you apply the Gram-Schmidt method to the entries of $\begin{bmatrix} 5 & 7 \\ 0 & 4 \end{bmatrix}$, it will result in a factorization into $\begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & -7/5 \\ 0 & 1 \end{bmatrix}$.
- (13) (Input-Output Economics Problem)

Suppose you want to study the paper sector and the electronics sector of your economy. Suppose the inter-industry consumption matrix and the final demand vector are $C = \begin{bmatrix} .1 & .6 \\ .5 & .2 \end{bmatrix}$, $\mathbf{d} = \begin{bmatrix} 10 \\ 22 \end{bmatrix}$. Solve the production equation. Give an interpretation of all the numbers in \overline{C} , d, and x. Which industry is more efficient?

(14) (Markov Chains Problem)

Suppose you consider five possible mood statuses (happy, hungry, dazed, incensed, and ticklish), and you form a 5×5 stochastic matrix P describing the transition probabilities between these moods from one moment to the next. If \mathbf{x} is an eigenvector of P corresponding to the eigenvalue $\lambda = 1$, give an interpretation of the meaning of \mathbf{x} in terms of your moods.

(15) (Least Squares Problem) Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 2\\ -1 & 4\\ 1 & 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4\\ -2\\ -3 \end{bmatrix}.$$