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MATH 217 — WINTER 2011

Due January 19

Functions
Let X and Y be sets. A function f : X → Y is a map which assigns a unique element f(x) ∈ Y
to each element x ∈ X . The domain of f is the set X; the codomain of f is the set Y .
Let A ⊆ X . The image of A under f is the set

f(A) = {f(x) | x ∈ A} .

Let B ⊆ Y . The preimage of B under f is the set

f−1(B) = {x ∈ X | f(x) ∈ B} .

PROBLEM 2.1. Decide whether or not each of the following is a function. Justify your answers.

(a) f : R→ R given by f(x) = x3 + x− 5.

(b) f : R→ R given by f(x) =

{
x2 if x ≥ 2,

3x− 1 if x ≤ 2.

(c) f : R→ R given by f(x) =

{
x2 if x ≥ 2,

3x− 2 if x ≤ 2.

PROBLEM 2.2. Decide whether the following statements are true or false. If true, prove it. If
false, provide a counterexample which shows that the statement is false; i.e. give an explicit,
concrete example of a function f for which the equality fails—don’t forget to provide the domain
and codomain in your example!

(a) f−1(f(A)) = A.

(b) f(f−1(B)) = B.

(c) f(A1 ∪ A2) = f(A1) ∪ f(A2).

(d) f(A1 ∩ A2) = f(A1) ∩ f(A2).



Induction
The set of positive integers {1, 2, 3, . . . } is called the natural numbers and is denoted by N.
Mathematical statements which depend on a natural number n can sometimes be proved using the
method of induction. We state the principle of induction and provide an example in which we
employ this principle to prove a statement below:

PRINCIPLE OF MATHEMATICAL INDUCTION. Consider a statement P (n) which depends on a
natural number n ∈ N. If

(i) P (k) is true, and

(ii) For any given n ∈ N such that n ≥ k, we have P (n) true =⇒ P (n+ 1) true,

then the statement P (n) is true for all n ≥ k.

EXAMPLE. Prove that the sum 1 + 2 + · · ·n =
n(n+ 1)

2︸ ︷︷ ︸
statement P (n)

for all n ∈ N.

Proof. The base case is the statement for n = 1. When n = 1, we have that 1(1+1)
2

= 2
2
= 1, and

the equality holds.
For the inductive step, assume that the equality 1 + 2 + · · ·n = n(n+1)

2
holds, and consider the

sum 1 + 2 + · · ·+ n+ (n+ 1). By the inductive hypothesis, we have

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1)

2
+

2(n+ 1)

2

=
(n+ 2)(n+ 1)

2

=
(n+ 1)((n+ 1) + 1)

2
,

and so the equality also holds for n+ 1.
By the Principle of Mathematical Induction, the result holds for all n ∈ N.

For problems 2.3 and 2.4, use induction to prove the given statement. Carefully explain what
you are doing in your proof (e.g. your hypotheses in each step, the conclusion you wish to draw).
Begin and end your proof by mentioning that you are using or have used induction. You will be
graded as much on form as on mathematical content.

PROBLEM 2.3. Prove that the sum of the first n odd natural numbers is n2.



PROBLEM 2.4. Prove the power rule for derivatives of polynomials:

for f(x) = xn, f ′(x) = nxn−1.

You may use the product rule for derivatives (namely, (fg)′ = f ′g + fg′) in your argument.

PROBLEM 2.5. Find the flaw(s) in the following inductive “proof”:

RIDICULOUS CLAIM. All tables are the same height.

“Proof”. To prove this by induction, we let P (n) be the statement “For any set of n tables, all
n tables are the same height.” If we prove this true for all n, it will certainly be true for n = the
number of tables that exist.

Now we proceed by induction on the number of tables. The base case is the case in which there
is one table. Since this table is the same height as itself, the base case is true. Now assume that the
statement holds for any set of n tables, and consider a set of n+ 1 tables.

Put the tables in a line. If we remove the first table, we are left with a set of n tables. Then by
the inductive hypothesis, these n tables must all be the same height. If, instead, we had removed
the last table, we would again have n tables, which would now include the first one, and again by
inductive hypothesis all n tables would be the same height. Therefore, all of the tables must be the
same height as, for instance, the second table from the front, and consequently must be the same
height as one another. The result then follows from induction.


