
Proofs Homework Set 3

MATH 217 — WINTER 2011

Due January 26

A few words about proofs. This is our first set of proof problems. There will be additional proof
problems accompanying every assignment for the rest of the semester. Here are some suggestions
to keep in mind:

Write down your solutions in full, as if you were writing them for another student in the
class to read and understand.

Don’t be sloppy, since your solutions will be judged on precision and completeness and not
merely on“basically getting it right.”

Cite every theorem or fact that you are using. (“By Theorem 1.10 . . . ” , or “By the theorem
from class which states that for every matrix such that . . . we also have . . . ”, etc.)

If you compute something by observation, say so and make sure that your fellow imaginary
student (who is reading your proof ) can also clearly see what you are claiming.

Justify each step in writing and leave nothing to imagination.

PROBLEM 3.1. In this problem, we will completely determine which 2 × 2 matrices give which
reduced echelon forms. For now on, set

M =

[
a b
c d

]
for a, b, c, d ∈ R. We assume throughout that at least one of a, b, c, d is nonzero, i.e., that M is not
the 2× 2 matrix with all entries zero.

(a) Give an example of an M where a, b, c, d are all nonzero and ad− bc = 0. Show that your M
has reduced echelon form [

1 y
0 0

]
for some y 6= 0.

(b) Generalize your computation from part (a) to prove that any M satisfying that a, b, c, d are all
nonzero and ad− bc = 0 has reduced echelon form[

1 b/a
0 0

]
.



(Note that dividing by a is okay, since we assumed a 6= 0.)

HINT. Start off by multiplying the top row by d, which is legal since d 6= 0, and then the
bottom row by −b, which is again okay, since b 6= 0.

(c) Suppose that ad− bc = 0 at least one of a, b, c, d is zero. Prove that M has at least one column
or row with all zeros.

(d) Show that if M has exactly one column with all zeros, then the reduced echelon form of M is
one of [

1 0
0 0

]
or

[
0 1
0 0

]
.

(e) Show that if M has exactly one row with all zeros, then the reduced echelon form of M is one
of [

1 y
0 0

]
or

[
0 1
0 0

]
,

where y might be zero.

(f) Suppose that ad− bc 6= 0. Prove that M has reduced echelon form the 2× 2 identity matrix:[
1 0
0 1

]
.

HINT. Start off with essentially the same row operations as in part (b), add one row to another,
then show that the first column is a pivot column. Then, do some more row operations to show
that the second column is also a pivot column.

Part (f) is in fact an if and only if statement. That is:

THEOREM. A 2× 2 matrix

M =

[
a b
c d

]
,

with a, b, c, d ∈ R, has reduced echelon form the 2× 2 identity matrix if and only if ad− bc 6= 0.

Proof. By part (f), we know that if ad− bc 6= 0 then M has reduced echelon form
[
1 0
0 1

]
.

Now suppose ad− bc = 0. We consider three cases; in each case we will find that the reduced
echelon form of M is not the 2× 2 identity matrix.

Case a, b, c, d are all nonzero. In this case, part (b) tells us that M has reduced echelon form[
1 y
0 0

]
where y 6= 0; this is not the 2× 2 identity matrix.

Case a, b, c, d are all zero. In this case, M =

[
0 0
0 0

]
is already in reduced echelon form and it is

not the 2× 2 identity matrix.

Case at least one but not all of a, b, c, d are zero. In this case, part (c) tells us that M has at least
one zero column or one zero row, which leads to two subcases:



• In the subcase when M has one zero column, then part (d) tells us that the reduced echelon

form of M is one of
[
1 0
0 0

]
or

[
0 1
0 0

]
, neither of which is the 2× 2 identity matrix.

• In the subcase when M has one zero row, then part (e) tells us that the reduced echelon form

of M is one of
[
1 y
0 0

]
or

[
0 1
0 0

]
, neither of which is the 2× 2 identity matrix.


