# Proofs Homework Set 4 

## MATH 217 — Winter 2011

## Due February 2

Problem 4.1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Prove that any three vectors in the image of $T$ are linearly dependent.

Proof. Recall that the image of a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ consists of all vectors y in $\mathbb{R}^{m}$ which are of the form $\mathbf{y}=T(\mathbf{x})$ for some $\mathbf{x}$ in $\mathbb{R}^{n}$.

If $\mathbf{v}_{1}, \mathbf{v}_{2}$ and $\mathbf{v}_{3}$ lie in the image of $T$, we can write

$$
\mathbf{v}_{1}=T\left(\mathbf{w}_{1}\right), \quad \mathbf{v}_{2}=T\left(\mathbf{w}_{2}\right), \quad \mathbf{v}_{3}=T\left(\mathbf{w}_{3}\right)
$$

for some $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ in $\mathbb{R}^{2}$. Theorem 8 in $\S 1.7$ tells us that if a set contains more vectors than there are entries in each vector, then the set is linearly dependent. In our case, as $\mathbf{w}_{1}, \mathbf{w}_{2}$ and $\mathbf{w}_{3}$ are three vectors in $\mathbb{R}^{2}$, they must be linearly dependent, meaning that there exist real numbers $c_{1}, c_{2}, c_{3}$, not all zero, such that

$$
c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+c_{3} \mathbf{w}_{3}=\mathbf{0} .
$$

Applying $T$ to both sides of this equality, and using linearity of $T$ (namely that $T(\mathbf{u}+\mathbf{v})=$ $T(\mathbf{u})+T(\mathbf{v})$ and $T(c \mathbf{u})=c T(\mathbf{u})$ ), we obtain

$$
\begin{aligned}
T\left(c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+c_{3} \mathbf{w}_{3}\right) & =T(\mathbf{0}) \\
T\left(c_{1} \mathbf{w}_{1}\right)+T\left(c_{2} \mathbf{w}_{2}\right)+T\left(c_{3} \mathbf{w}_{3}\right) & =\mathbf{0} \\
c_{1} T\left(\mathbf{w}_{1}\right)+c_{2} T\left(\mathbf{w}_{2}\right)+c_{3} T\left(\mathbf{w}_{3}\right) & =\mathbf{0} \\
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3} & =\mathbf{0} .
\end{aligned}
$$

This is a linear combination of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and $\mathbf{v}_{3}$ which equals zero, and in which not all coefficients $c_{1}, c_{2}, c_{3}$ equal zero. We have found a linear dependence relation for $\mathbf{v}_{1}, \mathbf{v}_{2}$ and $\mathbf{v}_{3}$, and so the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and $\mathbf{v}_{3}$ are linearly dependent.

Problem 4.2. Let $A$ be a $3 \times 4$ matrix and $\mathbf{b}, \mathbf{c}$ be two vectors in $\mathbb{R}^{3}$ such that both matrix equations

$$
A \mathbf{x}=\mathbf{b} \quad \text { and } \quad A \mathbf{y}=\mathbf{c}
$$

are consistent. Prove that there exists a vector $\mathbf{d} \in \mathbb{R}^{4}$ such that the set of solutions $\mathbf{y}$ to the second equation $A \mathbf{y}=\mathbf{c}$ is the set of all vectors of the form $\mathbf{y}=\mathbf{x}+\mathbf{d}$, where $\mathbf{x}$ is any solution of the first equation $A \mathbf{x}=\mathbf{b}$.

Proof. Let $\mathbf{p}$ and $\mathbf{q}$ be some particular solutions of $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{y}=\mathbf{c}$, respectively; i.e.

$$
A \mathbf{p}=\mathbf{b}, \quad A \mathbf{q}=\mathbf{c}
$$

We will prove that $\mathbf{y}$ is a solution of $A \mathbf{y}=\mathbf{c}$ if and only if $\mathbf{y}=\mathbf{x}+(\mathbf{q}-\mathbf{p})$ for some $\mathbf{x}$ which is a solution of $A \mathbf{x}=\mathbf{b}$. This will mean that the choice $\mathbf{d}=\mathbf{q}-\mathbf{p}$ is permissible.

Suppose first that $\mathbf{y}$ is a solution of $A \mathbf{y}=\mathbf{c}$. For $\mathbf{y}=\mathbf{x}+(\mathbf{q}-\mathbf{p})$ to be true, we need that $\mathbf{x}=\mathbf{y}-\mathbf{q}+\mathbf{p}$. We verify that this $\mathbf{x}$ is a solution of $A \mathbf{x}=\mathbf{b}$. By using the properties of Theorem 5 in $\S 1.4$, we compute

$$
\begin{aligned}
A \mathbf{x} & =A(\mathbf{y}-\mathbf{q}+\mathbf{p}) \\
& =A \mathbf{y}-A \mathbf{q}+A \mathbf{p}=\mathbf{c}-\mathbf{c}+\mathbf{b}=\mathbf{b}
\end{aligned}
$$

so that x is indeed a solution of $A \mathrm{x}=\mathbf{b}$.
Suppose next that $\mathbf{y}=\mathbf{x}+(\mathbf{q}-\mathbf{p})$ for some $\mathbf{x}$ which is a solution of $A \mathbf{x}=\mathbf{b}$; we need to verify that $\mathbf{y}$ is a solution of $A \mathbf{y}=\mathbf{c}$. Using the same properties as above,

$$
\begin{aligned}
A \mathbf{y} & =A(\mathbf{x}+\mathbf{q}-\mathbf{p}) \\
& =A \mathbf{x}+A \mathbf{q}-A \mathbf{p}=\mathbf{b}+\mathbf{c}-\mathbf{b}=\mathbf{c}
\end{aligned}
$$

so that $\mathbf{y}$ is indeed a solution of $A \mathbf{y}=\mathbf{c}$.

