Proofs Homework Set 4

MATH 217 — WINTER 2011

Due February 2

PROBLEM 4.1. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. Prove that any three vectors in the image of T are linearly dependent.

Proof. Recall that the image of a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ consists of all vectors \mathbf{y} in \mathbb{R}^m which are of the form $\mathbf{y} = T(\mathbf{x})$ for some \mathbf{x} in \mathbb{R}^n .

If v_1 , v_2 and v_3 lie in the image of T, we can write

$$\mathbf{v}_1 = T(\mathbf{w}_1), \quad \mathbf{v}_2 = T(\mathbf{w}_2), \quad \mathbf{v}_3 = T(\mathbf{w}_3)$$

for some \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 in \mathbb{R}^2 . Theorem 8 in §1.7 tells us that if a set contains more vectors than there are entries in each vector, then the set is linearly dependent. In our case, as \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 are three vectors in \mathbb{R}^2 , they must be linearly dependent, meaning that there exist real numbers c_1 , c_2 , c_3 , not all zero, such that

$$c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + c_3\mathbf{w}_3 = \mathbf{0}.$$

Applying T to both sides of this equality, and using linearity of T (namely that $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and $T(c\mathbf{u}) = cT(\mathbf{u})$), we obtain

$$T(c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + c_3\mathbf{w}_3) = T(\mathbf{0})$$

$$T(c_1\mathbf{w}_1) + T(c_2\mathbf{w}_2) + T(c_3\mathbf{w}_3) = \mathbf{0}$$

$$c_1T(\mathbf{w}_1) + c_2T(\mathbf{w}_2) + c_3T(\mathbf{w}_3) = \mathbf{0}$$

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}.$$

This is a linear combination of vectors \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 which equals zero, and in which not all coefficients c_1, c_2, c_3 equal zero. We have found a linear dependence relation for \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 , and so the vectors \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are linearly dependent.

PROBLEM 4.2. Let A be a 3×4 matrix and \mathbf{b}, \mathbf{c} be two vectors in \mathbb{R}^3 such that both matrix equations

$$A\mathbf{x} = \mathbf{b}$$
 and $A\mathbf{y} = \mathbf{c}$

are consistent. Prove that there exists a vector $\mathbf{d} \in \mathbb{R}^4$ such that the set of solutions \mathbf{y} to the second equation $A\mathbf{y} = \mathbf{c}$ is the set of all vectors of the form $\mathbf{y} = \mathbf{x} + \mathbf{d}$, where \mathbf{x} is any solution of the first equation $A\mathbf{x} = \mathbf{b}$.

Proof. Let p and q be some particular solutions of Ax = b and Ay = c, respectively; i.e.

$$A\mathbf{p} = \mathbf{b}, \quad A\mathbf{q} = \mathbf{c}.$$

We will prove that y is a solution of Ay = c if and only if y = x + (q - p) for some x which is a solution of Ax = b. This will mean that the choice d = q - p is permissible.

Suppose first that y is a solution of Ay = c. For y = x + (q - p) to be true, we need that x = y - q + p. We verify that this x is a solution of Ax = b. By using the properties of Theorem 5 in §1.4, we compute

$$A\mathbf{x} = A(\mathbf{y} - \mathbf{q} + \mathbf{p})$$

= $A\mathbf{y} - A\mathbf{q} + A\mathbf{p} = \mathbf{c} - \mathbf{c} + \mathbf{b} = \mathbf{b}$,

so that x is indeed a solution of Ax = b.

Suppose next that y = x + (q - p) for some x which is a solution of Ax = b; we need to verify that y is a solution of Ay = c. Using the same properties as above,

$$A\mathbf{y} = A(\mathbf{x} + \mathbf{q} - \mathbf{p})$$

= $A\mathbf{x} + A\mathbf{q} - A\mathbf{p} = \mathbf{b} + \mathbf{c} - \mathbf{b} = \mathbf{c}$,

so that y is indeed a solution of Ay = c.