Proofs Homework Set 4

Math 217 - Winter 2011

Due February 2

Problem 4.1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Prove that any three vectors in the image of T are linearly dependent. In other words, show that if $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3} \in \mathbb{R}^{2}$ then the vectors $T\left(\mathbf{w}_{1}\right), T\left(\mathbf{w}_{2}\right), T\left(\mathbf{w}_{3}\right)$ are linearly dependent.

Problem 4.2. Let A be a $m \times n$ matrix and \mathbf{b}, \mathbf{c} be two vectors in \mathbb{R}^{m} such that both matrix equations

$$
A \mathbf{x}=\mathbf{b} \quad \text { and } \quad A \mathbf{y}=\mathbf{c}
$$

are consistent. Prove that there exists a vector $\mathbf{d} \in \mathbb{R}^{n}$ such that the set of solutions \mathbf{y} to the second equation $A \mathbf{y}=\mathbf{c}$ is the set of all vectors of the form $\mathbf{y}=\mathbf{x}+\mathbf{d}$, where x is any solution of the first equation $A \mathbf{x}=\mathbf{b}$.

