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PROBLEM 5.1. If A and B are n× n matrices which are row equivalent, prove that AC and BC
are row equivalent for every n× n matrix C. We will do this in two parts.

(a) Show that if A ∼ B (that is, if they are row equivalent), then EA = B for some matrix E
which is a product of elementary matrices.

Proof. By definition, if A ∼ B, there is some sequence of elementary row operations which,
when performed on A, produce B. Further, multiplying on the left by the corresponding
elementary matrix is the same as performing that row operation. So we have

A ∼ E1A ∼ E2E1A ∼ · · · ∼ EpEp−1 · · ·E2E1A = B

Thus, if E = EpEp−1 · · ·E2E1, we have EA = B.

(b) Show that if EA = B for some matrix E which is a product of elementary matrices, then
AC ∼ BC for every n× n matrix C.

Proof. Write E = EpEp−1 · · ·E2E1 where each Ei is an elementary matrix. Then

AC ∼ E1AC ∼ E2E1AC ∼ · · · ∼ EpEp−1 · · ·E2E1AC = EAC

Since EA = B, we can multiply on the right by C to get EAC = BC. Therefore AC ∼ BC,
as claimed.

PROBLEM 5.2. An upper triangular matrix is a square matrix in which the entries below the

diagonal are all zero, that is, aij = 0 whenever i > j. An example is the 4× 4 matrix
[

4 5 10 1
0 7 −1 1
0 0 2 0
0 0 0 9

]
.

Let A be a n× n upper triangular matrix with nonzero diagonal entries. In this problem, you will
build up the pieces necessary to prove that A is invertible and that the inverse of A is also upper
triangular.

(a) Prove that the elementary matrices corresponding to the row operations of

• scaling, and

• a replacement move that adds a lower row to a higher row



are upper triangular.

Proof. The elementary matrix corresponding to scaling, say, the ith row by k is the matrix with
ones on the diagonal, except in the ith row, which instead has a k, and zeros everywhere else.
In particuar, then, the (i, j)-th entry is zero when i > j.

Next consider a replacement that adds the i1 row to the i2 row, where i1 < i2. This matrix
has nonzero entries only along the diagonal and in the (i1, i2) position, which is above the
diagonal. Therefore, all entries below the diagonal are zero.

(b) Prove that the two kinds of row operations listed above are sufficient to row-reduce A to the
identity matrix. In particular, the matrix A is invertible.

Proof. Since A is an upper triangular matrix with nonzero diagonal entries, it is already in
echelon form. Therefore, we only need to perform Step 5 of the Row Reduction Algorithm on
A (see page 19 of the book). This final step of the algorithm only involves row operations of
the type listed above.

Moreover, every diagonal entry of A is a pivot, so we know that every diagonal entry of the
reduced echelon form of A is also a pivot. The only reduced echelon form n×n matrix where
every diagonal entry is a pivot is the n× n identity matrix In.

(c) Prove that the product of two upper triangular matrices is upper triangular.

Proof. Suppose that U and V are two upper triangular n × n matrices. By the row-column
rule for matrix multiplication we know that the (i, j)-th entry of the product UV is

ui1v1j + ui2v2j + · · ·+ uinvnj.

We need to show that if i > j then this expression evaluates to 0. In fact, we will show that
every term uikvkj of this expression evaluates to 0.

To prove this, we consider two cases:

• If i > k then uik = 0 since U is upper triangular. Hence uikvkj = 0.

• If k > j then vkj = 0 since V is upper triangular. Hence uikvkj = 0.

Since i > j, for every k we either have i > k or k > j (possibly both) so these two cases cover
all possibilities for k.

(d) Use these pieces to prove that the inverse of A is upper triangular. (You can get credit for this
part even if you didn’t do one of the others! Just show that you can put the pieces together to
get the desired answer.)



Proof. Since A is upper triangular, we know from part (b) that there is a sequence of row
operations of the type described in part (a) that transforms A into the n × n identity matrix.
Therefore there is a sequence of upper triangular elementary matrices E1, E2, . . . , Ep−1, Ep

such that
EpEp−1 · · ·E2E1A = In.

As we saw in Theorem 7 of §2.2, we then have

A−1 = EpEp−1 · · ·E2E1.

The right hand side of this last equality is a product of upper triangular matrices. By part (c),
the result of this product is also an upper triangular matrix. This shows that A−1 is an upper
triangular matrix, as claimed.


