Proofs Homework Set 6

MATH 217 — WINTER 2011

Due February 16

PROBLEM 6.1.

(a) If A is an invertible $n \times n$ matrix, find $det(A^{-1})$ in terms of det(A).

Proof. Since $AA^{-1} = I_n$, we see that

$$\det(A) \det(A^{-1}) = \det(AA^{-1}) = \det(I_n) = 1.$$

Since $det(A) \neq 0$, we conclude that $det(A^{-1}) = 1/det(A)$.

(b) If A and C are $n \times n$ matrices and C is invertible, show that $\det(A) = \det(CAC^{-1})$.

Proof. Since determinants are multiplicative, we have

$$\det(CAC^{-1}) = \det(C)\det(A)\det(C^{-1}).$$

By part (a), we know that $\det(C^{-1}) = 1/\det(C)$. Therefore,

$$\det(CAC^{-1}) = \frac{\det(C)}{\det(C)}\det(A) = \det(A),$$

as required.

PROBLEM 6.2. We say that a square matrix A is **skew-symmetric** if $A^T = -A$.

Suppose that A is a skew-symmetric $n \times n$ matrix and that \mathbf{x} is a solution of the homogeneous equation $(A + I_n)\mathbf{x} = \mathbf{0}$.

(a) Show that $A\mathbf{x} = -\mathbf{x}$.

Proof. Since
$$(A + I_n)\mathbf{x} = \mathbf{0}$$
, we have $A\mathbf{x} + \mathbf{x} = \mathbf{0}$ and hence $A\mathbf{x} = -\mathbf{x}$.

(b) Show that $\mathbf{x}^T A = \mathbf{x}^T$.

Proof. Transposing
$$A\mathbf{x} = -\mathbf{x}$$
, we obtain $\mathbf{x}^T A^T = -\mathbf{x}^T$. Since $A^T = -A$, we conclude that $\mathbf{x}^T A = \mathbf{x}^T$.

(c) Using parts (a) and (b), show that $\mathbf{x}^T \mathbf{x} = -\mathbf{x}^T \mathbf{x}$.

Proof. Multiplying the equation of part (a) on the left by \mathbf{x}^T , we obtain $\mathbf{x}^T A \mathbf{x} = -\mathbf{x}^T \mathbf{x}$.

Multiplying the equation of part (b) on the right by x, we obtain $x^T A x = x^T x$.

Combining these two facts, we obtain that $\mathbf{x}^T\mathbf{x} = -\mathbf{x}^T\mathbf{x}$.

(d) Using part (c), show that x = 0.

Proof. First note that

$$\mathbf{x}^T \mathbf{x} = [x_1^2 + x_2^2 + \dots + x_n^2].$$

It follows from part (c) that $\mathbf{x}^T\mathbf{x} = [0]$ (since 0 is the only number that equals its negative). Therefore

$$x_1^2 + x_2^2 + \dots + x_n^2 = 0,$$

which is only possible if $x_1 = x_2 = \cdots = x_n = 0$.

(e) Conclude that $A + I_n$ is invertible.

Proof. It follows from the above that the only solution of the homogeneous equation $(A + I_n)\mathbf{x} = \mathbf{0}$ is the trivial solution $\mathbf{x} = \mathbf{0}$. Therefore, by the Invertible Matrix Theorem, the square matrix $A + I_n$ is invertible.