Proofs Homework Set 6

MATH 217 — WINTER 2011

Due February 16

PROBLEM 6.1.

- (a) If A is an invertible $n \times n$ matrix, find $det(A^{-1})$ in terms of det(A).
- (b) If A and C are $n \times n$ matrices and C is invertible, show that $det(A) = det(CAC^{-1})$.

PROBLEM 6.2. We say that a square matrix A is **skew-symmetric** if $A^T = -A$. Suppose that A is a skew-symmetric $n \times n$ matrix and that x is a solution of the homogeneous equation $(A + I_n)\mathbf{x} = \mathbf{0}$.

- (a) Show that $A\mathbf{x} = -\mathbf{x}$.
- (b) Show that $\mathbf{x}^T A = \mathbf{x}^T$.
- (c) Using parts (a) and (b), show that $\mathbf{x}^T \mathbf{x} = -\mathbf{x}^T \mathbf{x}$.
- (d) Using part (c), show that x = 0.
- (e) Conclude that $A + I_n$ is invertible.