Proofs Homework Set 6

MATH 217 — Winter 2011

Due February 16

Problem 6.1.

(a) If A is an invertible $n \times n$ matrix, find $\operatorname{det}\left(A^{-1}\right)$ in terms of $\operatorname{det}(A)$.
(b) If A and C are $n \times n$ matrices and C is invertible, show that $\operatorname{det}(A)=\operatorname{det}\left(C A C^{-1}\right)$.

Problem 6.2. We say that a square matrix A is skew-symmetric if $A^{T}=-A$.
Suppose that A is a skew-symmetric $n \times n$ matrix and that \mathbf{x} is a solution of the homogeneous equation $\left(A+I_{n}\right) \mathbf{x}=\mathbf{0}$.
(a) Show that $A \mathbf{x}=-\mathbf{x}$.
(b) Show that $\mathbf{x}^{T} A=\mathbf{x}^{T}$.
(c) Using parts (a) and (b), show that $\mathbf{x}^{T} \mathbf{x}=-\mathbf{x}^{T} \mathbf{x}$.
(d) Using part (c), show that $\mathbf{x}=\mathbf{0}$.
(e) Conclude that $A+I_{n}$ is invertible.

