Proofs Homework Set 7

MATH 217 — Winter 2011

Due February 23

Problem 7.1. Let V and W be vector spaces, and suppose that $T: V \rightarrow W$ is a one-to-one linear transformation. If there are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in V such that the vectors $T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{k}\right)$ span W, prove that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ span V.

Proof. Pick an arbitrary $\mathbf{v} \in V$. Since the vectors $T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{k}\right)$ span W, there exist scalars $c_{1}, c_{2}, \ldots, c_{k}$ such that

$$
T(\mathbf{v})=c_{1} T\left(\mathbf{v}_{1}\right)+c_{2} T\left(\mathbf{v}_{2}\right)+\cdots+c_{k} T\left(\mathbf{v}_{k}\right)
$$

By applying the linearity of T to the right-hand side, this is equivalent to

$$
T(\mathbf{v})=T\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}\right) .
$$

Since T is one-to-one, every vector in W is an image of at most one vector in V under T. This means that

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k} .
$$

This equality shows that every vector in V can be written as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$, which means that these vectors span V.

Problem 7.2. Let V be a vector space. Suppose that H is a nonempty subset of V such that $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\} \subseteq H$ for all vectors $\mathbf{x}, \mathbf{y} \in H$. Prove that H is a subspace of V.

Proof. We need to verify three facts:
(1) The zero vector 0 belongs to H.
(2) If \mathbf{x}, \mathbf{y} both belong to H then $\mathbf{x}+\mathbf{y}$ belongs to H too.
(3) If \mathbf{x} belongs to H and $c \in \mathbb{R}$, then $c \mathbf{x}$ belongs to H too.

For (1), since H is nonempty there is a vector \mathbf{x} that belongs to H. Then $\mathbf{0}=0 \mathbf{x}$ belongs to $\operatorname{Span}\{\mathbf{x}\}$. Since $\operatorname{Span}\{\mathbf{x}\}=\operatorname{Span}\{\mathbf{x}, \mathbf{x}\}$ is a subset of H, we conclude that $\mathbf{0}$ belongs to H.

For (2), suppose that \mathbf{x}, \mathbf{y} both belong to H. Then $\mathbf{x}+\mathbf{y}$ belongs to $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$. Since $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$ is a subset of H, we conclude that $\mathbf{x}+\mathbf{y}$ belongs to H.

For (3), suppose that \mathbf{x} belongs to H and that $c \in \mathbb{R}$. Then $c \mathbf{x}$ belongs to $\operatorname{Span}\{\mathbf{x}\}$. Since $\operatorname{Span}\{\mathbf{x}\}=\operatorname{Span}\{\mathbf{x}, \mathbf{x}\}$ is a subset of H, we conclude that $c \mathbf{x}$ belongs to H.

Problem 7.3. Consider the vector space $C(\mathbb{R})$ of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $Z: C(\mathbb{R}) \rightarrow \mathbb{R}$ be defined by $Z(f)=f(0)$.
(a) Prove that Z is a linear transformation.

Proof. We need to show that

$$
Z(f+g)=Z(f)+Z(g) \quad \text { and } \quad Z(c f)=c Z(f)
$$

for all $f, g \in C(\mathbb{R})$ and all $c \in \mathbb{R}$.
First, suppose $f, g \in C(\mathbb{R})$. Then

$$
Z(f+g)=(f+g)(0)=f(0)+g(0)=Z(f)+Z(g) .
$$

Next, suppose that $f \in C(\mathbb{R})$ and $c \in \mathbb{R}$. Then

$$
Z(c f)=(c f)(0)=c f(0)=c Z(f) .
$$

(b) Prove that Z is onto.

Proof. Given $x \in \mathbb{R}$, let $f_{x}: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function with value x. Since constant functions are continuous, we see that $f_{x} \in C(\mathbb{R})$. Moreover, $Z\left(f_{x}\right)=f_{x}(0)=x$.
(c) Using part (a), prove that the set $\{f \in C(\mathbb{R}) \mid f(0)=0\}$ is a subspace of $C(\mathbb{R})$.

Proof. The set $\{f \in C(\mathbb{R}) \mid f(0)=0\}$ is simply the kernel of Z. Since Z is a linear transformation by part (a), its kernel is a subspace of $C(\mathbb{R})$.

