Proofs Homework Set 7

MATH 217 — WINTER 2011

Due February 23

PROBLEM 7.1. Let V and W be vector spaces, and suppose that $T:V\to W$ is a one-to-one linear transformation. If there are vectors $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k$ in V such that the vectors $T(\mathbf{v}_1),T(\mathbf{v}_2),\ldots,T(\mathbf{v}_k)$ span W, prove that the vectors $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k$ span V.

PROBLEM 7.2. Let V be a vector space. Suppose that H is a nonempty subset of V such that $\mathrm{Span}\{\mathbf{x},\mathbf{y}\}\subseteq H$ for all vectors $\mathbf{x},\mathbf{y}\in H$. Prove that H is a subspace of V.

PROBLEM 7.3. Consider the vector space $C(\mathbb{R})$ of all continuous functions $f: \mathbb{R} \to \mathbb{R}$. Let $Z: C(\mathbb{R}) \to \mathbb{R}$ be defined by Z(f) = f(0).

- (a) Prove that Z is a linear transformation.
- (b) Prove that Z is onto.
- (c) Using part (a), prove that the set $\{f \in C(\mathbb{R}) \mid f(0) = 0\}$ is a subspace of $C(\mathbb{R})$.