Proofs Homework Set 8

MATH 217 — Winter 2011

Due March 9

Problem 8.1. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$ be two bases of a vector space V. Prove that the coordinate vectors $\left\{\left[\mathbf{b}_{1}\right]_{\mathcal{C}},\left[\mathbf{b}_{2}\right]_{\mathcal{C}}, \ldots,\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right\}$ form a basis of \mathbb{R}^{n}.

Proof. We need to prove that the vectors $\left\{\left[\mathbf{b}_{1}\right]_{\mathcal{C}},\left[\mathbf{b}_{2}\right]_{\mathcal{C}}, \ldots,\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right\}$ are linearly independent and that they span \mathbb{R}^{n}.

Suppose that

$$
x_{1}\left[\mathbf{b}_{1}\right]_{\mathcal{C}}+x_{2}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}+\cdots+x_{n}\left[\mathbf{b}_{n}\right]_{\mathcal{C}}=\mathbf{0}
$$

By the linearity of the coordinate transformation $[\cdot]_{\mathcal{C}}$, this is the same as

$$
\left[x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{n} \mathbf{b}_{n}\right]_{\mathcal{C}}=\mathbf{0}
$$

Further, because the coordinate transformation is one-to-one, this implies that

$$
x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{n} \mathbf{b}_{n}=\mathbf{0}
$$

Since the vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ form a basis of V and are thus linearly independent, this is possible only if $x_{1}=x_{2}=\cdots=x_{n}=0$. Therefore, $\left\{\left[\mathbf{b}_{1}\right]_{\mathcal{C}},\left[\mathbf{b}_{2}\right]_{\mathcal{C}}, \ldots,\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right\}$ is also linearly independent.

To show that the vectors $\left\{\left[\mathbf{b}_{1}\right]_{\mathcal{C}},\left[\mathbf{b}_{2}\right]_{\mathcal{C}}, \ldots,\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right\}$ span \mathbb{R}^{n}, pick an arbitrary $\mathbf{w} \in \mathbb{R}^{n}$. Since the coordinate transformation $[\cdot]_{\mathcal{C}}: V \rightarrow \mathbb{R}^{n}$ is onto, there exists a vector $\mathbf{v} \in V$ such that

$$
[\mathbf{v}]_{\mathcal{C}}=\mathbf{w} .
$$

$\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is a basis of V, and so these vectors span V. Thus, there exist scalars $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\mathbf{v}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{n} \mathbf{b}_{n} .
$$

Applying the coordinate transformation $[\cdot]_{\mathcal{C}}$ to both sides and using its linearity we obtain

$$
\begin{aligned}
\mathbf{w}=[\mathbf{v}]_{\mathcal{C}} & =\left[x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{n} \mathbf{b}_{n}\right]_{\mathcal{C}} \\
& =x_{1}\left[\mathbf{b}_{1}\right]_{\mathcal{C}}+x_{2}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}+\cdots+x_{n}\left[\mathbf{b}_{n}\right]_{\mathcal{C}} .
\end{aligned}
$$

This shows that every vector $\mathbf{w} \in \mathbb{R}^{n}$ can be written as a linear combination of the vectors $\left\{\left[\mathbf{b}_{1}\right]_{\mathcal{C}},\left[\mathbf{b}_{2}\right]_{\mathcal{C}}, \ldots,\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right\}$, which means these vectors span \mathbb{R}^{n}.

Problem 8.2. Let U, V, W be three vector spaces and suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear isomorphisms (i.e. T and S are one-to-one and onto linear transformations). Prove that their composition $S \circ T$ is also a linear isomorphism. (Recall that the composition $S \circ T$ is the function from U to W defined by $(S \circ T)(\mathbf{x})=S(T(\mathbf{x}))$ for all $\mathbf{x} \in U$. Don't forget to show that $S \circ T$ is a linear transformation!)

Proof. We need to show that the function $S \circ T$ is linear, one-to-one, and onto. We first show that $S \circ T$ is linear. Consider

$$
\begin{aligned}
(S \circ T)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) & =S\left(T\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)\right) \\
& =S\left(T\left(\mathbf{x}_{1}\right)+T\left(\mathbf{x}_{2}\right)\right) \\
& =S\left(T\left(\mathbf{x}_{1}\right)\right)+S\left(T\left(\mathbf{x}_{2}\right)\right) \\
& =(S \circ T)\left(\mathbf{x}_{1}\right)+(S \circ T)\left(\mathbf{x}_{2}\right), \\
(S \circ T)(a \mathbf{x}) & =S(T(a \mathbf{x})) \\
& =S(a T(\mathbf{x})) \\
& =a S(T(\mathbf{x})) \\
& =a(S \circ T)(\mathbf{x}),
\end{aligned}
$$

where we have used in each middle step the fact that both S and T are linear.
To show that a linear transformation $S \circ T$ is one-to-one, it would suffice to show that the only vector $\mathbf{x} \in U$ satisfying $(S \circ T)(\mathbf{x})=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$ itself. As

$$
S(T(\mathbf{x}))=\mathbf{0}
$$

and S is one-to-one, we deduce that $T(\mathbf{x})=\mathbf{0}$. Now, because T is one-to-one, this means that $\mathrm{x}=0$, as required.

To show that $S \circ T$ is onto, we need to prove that the equation $(S \circ T)(\mathbf{x})=S(T(\mathbf{x}))=\mathbf{y}$ has at least one solution in $\mathbf{x} \in U$ for any choice of $\mathbf{y} \in W$. Since S is onto, there is at least one $\mathbf{z} \in V$ such that

$$
S(\mathbf{z})=\mathbf{y} .
$$

Since T is onto, there is at least one $\mathbf{x} \in U$ such that

$$
T(\mathbf{x})=\mathbf{z}
$$

This particular \mathbf{x} will satisfy $(S \circ T)(\mathbf{x})=S(T(\mathbf{x}))=S(\mathbf{z})=\mathbf{y}$, as required.
Problem 8.3. Let V be a subspace of \mathbb{R}^{n} with dimension $n-1$ and let \mathbf{x} be a vector in \mathbb{R}^{n} which is not in V.
(a) Show that there is a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ for \mathbb{R}^{n} such that $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right\}$ is a basis for V and $\mathbf{b}_{n}=\mathbf{x}$.

Proof. Let $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right\}$ be any basis for V. Since $\mathbf{x} \notin V=\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right\}$, we know from Theorem 4 in Section 4.3 that the set $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}, \mathbf{x}\right\}$ is a linearly independent subset of \mathbb{R}^{n}. Since this is a set of size exactly n, it follows from Theorem 12 in Section 4.5 that $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}, \mathbf{x}\right\}$ is a basis for \mathbb{R}^{n}.
(b) Use part (a) to show that there is a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $T(\mathbf{x})=1$ and the kernel of T is V.

Proof. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be the basis for \mathbb{R}^{n} that we obtained in part (a). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the linear transformation that simply returns the last \mathcal{B}-coordinate of a vector in \mathbb{R}^{n}. In other words, $T(\mathbf{u})=c_{n}$ where

$$
[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

We first check that this is a linear transformation. This follows from the linearity of the coordinate transformation $\mathbf{v} \mapsto[\mathbf{v}]_{\mathcal{B}}$. Given vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ with

$$
[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \quad \text { and } \quad[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right]
$$

we have

$$
[\mathbf{u}+\mathbf{v}]_{\mathcal{B}}=[\mathbf{u}]_{\mathcal{B}}+[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1}+d_{1} \\
\vdots \\
c_{n}+d_{n}
\end{array}\right]
$$

Therefore, $T(\mathbf{u}+\mathbf{v})=c_{n}+d_{n}=T(\mathbf{u})+T(\mathbf{v})$. Given a vector $\mathbf{u} \in \mathbb{R}^{n}$ with

$$
[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

and a scalar $r \in \mathbb{R}$, we have

$$
[r \mathbf{u}]_{\mathcal{B}}=r[\mathbf{u}]_{\mathcal{B}}=\left[\begin{array}{c}
r c_{1} \\
\vdots \\
r c_{n}
\end{array}\right]
$$

Therefore, $T(r \mathbf{v})=r c_{n}=r T(\mathbf{v})$.
Now, we show that $T(\mathbf{x})=1$. To see this, simply note that

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

since

$$
\mathbf{x}=\mathbf{b}_{n}=0 \mathbf{b}_{1}+\cdots+0 \mathbf{b}_{n-1}+1 \mathbf{b}_{n} .
$$

Clearly, we then have $T(\mathbf{x})=U\left(\left[\mathbf{x}_{\mathcal{B}}\right)=1\right.$.
Finally, we show that $T(\mathbf{v})=0$ for every vector $\mathbf{v} \in V$. Since $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right\}$ is a basis for V, for every vector $\mathbf{v} \in V$ we have

$$
[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n-1} \\
0
\end{array}\right]
$$

for some scalars $c_{1}, \ldots, c_{n-1} \in \mathbb{R}$. In other words,

$$
\mathbf{v}=c_{1} \mathbf{b}_{1}+\cdots+c_{n-1} \mathbf{b}_{n-1}+0 \mathbf{b}_{n} .
$$

Therefore, $T(\mathbf{v})=0$ for every $\mathbf{v} \in V$.

