Proofs Homework Set 8

MATH 217 — WINTER 2011

Due March 9

PROBLEM 8.1. Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n}$ be two bases of a vector space V. Prove that the coordinate vectors ${[\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, \dots, [\mathbf{b}_n]_{\mathcal{C}}}$ form a basis of \mathbb{R}^n .

PROBLEM 8.2. Let U, V, W be three vector spaces and suppose that $T : U \to V$ and $S : V \to W$ are linear isomorphisms (i.e. T and S are one-to-one and onto linear transformations). Prove that their composition $S \circ T$ is also a linear isomorphism. (Recall that the composition $S \circ T$ is the function from U to W defined by $(S \circ T)(\mathbf{x}) = S(T(\mathbf{x}))$ for all $\mathbf{x} \in U$. Don't forget to show that $S \circ T$ is a linear transformation!)

PROBLEM 8.3. Let V be a subspace of \mathbb{R}^n with dimension n-1 and let x be a vector in \mathbb{R}^n which is not in V.

- (a) Show that there is a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ for \mathbb{R}^n such that $\{\mathbf{b}_1, \dots, \mathbf{b}_{n-1}\}$ is a basis for V and $\mathbf{b}_n = \mathbf{x}$.
- (b) Use part (a) to show that there is a linear transformation $T : \mathbb{R}^n \to \mathbb{R}$ such that $T(\mathbf{x}) = 1$ and the kernel of T is V.