Proofs Homework Set 8

Math 217 - Winter 2011

Due March 9

Problem 8.1. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$ be two bases of a vector space V. Prove that the coordinate vectors $\left\{\left[\mathbf{b}_{1}\right]_{\mathcal{C}},\left[\mathbf{b}_{2}\right]_{\mathcal{C}}, \ldots,\left[\mathbf{b}_{n}\right]_{\mathcal{C}}\right\}$ form a basis of \mathbb{R}^{n}.

Problem 8.2. Let U, V, W be three vector spaces and suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear isomorphisms (i.e. T and S are one-to-one and onto linear transformations). Prove that their composition $S \circ T$ is also a linear isomorphism. (Recall that the composition $S \circ T$ is the function from U to W defined by $(S \circ T)(\mathbf{x})=S(T(\mathbf{x}))$ for all $\mathbf{x} \in U$. Don't forget to show that $S \circ T$ is a linear transformation!)

Problem 8.3. Let V be a subspace of \mathbb{R}^{n} with dimension $n-1$ and let \mathbf{x} be a vector in \mathbb{R}^{n} which is not in V.
(a) Show that there is a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ for \mathbb{R}^{n} such that $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right\}$ is a basis for V and $\mathbf{b}_{n}=\mathbf{x}$.
(b) Use part (a) to show that there is a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $T(\mathbf{x})=1$ and the kernel of T is V.

