Proofs Homework Set 9

MATH 217 — Winter 2011

Due March 16

Problem 9.1.

(a) Let V be an n-dimensional vector space and let $T: V \rightarrow V$ be a linear transformation. Prove that if $\operatorname{Im}(T)=\operatorname{Ker}(T)$, then n is even.

Proof. By the Rank-Nullity Theorem, we know that

$$
\operatorname{dim} \operatorname{Im}(T)+\operatorname{dim} \operatorname{Ker}(T)=n
$$

Since $\operatorname{Im}(T)=\operatorname{Ker}(T)$, we have $\operatorname{dim} \operatorname{Im}(T)=\operatorname{dim} \operatorname{Ker}(T)$ and hence

$$
n=2 \operatorname{dim} \operatorname{Im}(T)=2 \operatorname{dim} \operatorname{Ker}(T),
$$

which shows that n is even.
(b) Give an example of such a transformation.

Proof. Let's take $V=\mathbb{R}^{2}$. Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\mathbf{x})=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \mathbf{x}
$$

Then

$$
\operatorname{Im}(T)=\operatorname{Col}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

and

$$
\operatorname{Ker}(T)=\operatorname{Nul}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} .
$$

Problem 9.2. Let U and W be subspaces of a finite dimensional vector space V such that $U \cap W=\{\mathbf{0}\}$. Define their sum $U+W:=\{u+w \mid u \in U, w \in W\}$, which is also a subspace of V. Let \mathcal{U} be a basis for U and let \mathcal{W} be a basis for W.

Denote $r=\operatorname{dim} U$ and $s=\operatorname{dim} W$. Let $\mathcal{U}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ and $\mathcal{W}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{s}\right\}$.
(a) Show that $\operatorname{Span}(\mathcal{U} \cup \mathcal{W})=U+W$.

Proof. Every vector \mathbf{v} in $U+W$ can be written in the form $\mathbf{v}=\mathbf{u}+\mathbf{w}$ for some $\mathbf{u} \in U$, $\mathbf{w} \in W$. Since \mathcal{U} is a basis of U, we have

$$
\mathbf{u}=x_{1} \mathbf{u}_{1}+\cdots+x_{r} \mathbf{u}_{r}
$$

for some x_{1}, \ldots, x_{r}; since \mathcal{W} is a basis of W, we have

$$
\mathbf{w}=y_{1} \mathbf{w}_{1}+\cdots+y_{s} \mathbf{w}_{s}
$$

for some y_{1}, \ldots, y_{s}. Adding these equations gives

$$
\mathbf{v}=\mathbf{u}+\mathbf{w}=x_{1} \mathbf{u}_{1}+\cdots+x_{r} \mathbf{u}_{r}+y_{1} \mathbf{w}_{1}+\cdots+y_{s} \mathbf{w}_{s} .
$$

So, every vector \mathbf{v} in $U+W$ can be written as a linear combination of the vectors in $\mathcal{U} \cup \mathcal{W}$; i.e. the vectors in $\mathcal{U} \cup \mathcal{W}$ span $U+W$.
(b) Show that $\mathcal{U} \cup \mathcal{W}$ is linearly independent.

Proof. Suppose that

$$
x_{1} \mathbf{u}_{1}+\cdots+x_{r} \mathbf{u}_{r}+y_{1} \mathbf{w}_{1}+\cdots+y_{s} \mathbf{w}_{s}=\mathbf{0}
$$

This can be rewritten as

$$
x_{1} \mathbf{u}_{1}+\cdots+x_{r} \mathbf{u}_{r}=-y_{1} \mathbf{w}_{1}-\cdots-y_{s} \mathbf{w}_{s}
$$

Vectors on either side of this equality are the same, call them \mathbf{v}. Looking at the left-hand side, \mathbf{v} is a linear combination of vectors in \mathcal{U}, so that $\mathbf{v} \in U$. Looking at the right-hand side, \mathbf{v} is a linear combination of vectors in \mathcal{W}, so that $\mathbf{v} \in W$. This means that $\mathbf{v} \in U \cap W$, but the statement of the problem says that $U \cap W=\{0\}$, so we must have $\mathbf{v}=\mathbf{0}$; i.e.

$$
x_{1} \mathbf{u}_{1}+\cdots+x_{r} \mathbf{u}_{r}=\mathbf{0}, \quad y_{1} \mathbf{w}_{1}+\cdots+y_{s} \mathbf{w}_{s}=\mathbf{0}
$$

Because \mathcal{U} is a basis of U, the vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ are linearly independent, so that the first of these equations is possible only if $x_{1}=\cdots=x_{r}=0$. Similarly, because \mathcal{W} is a basis of W, the vectors $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{s}\right\}$ are linearly independent, and the second equation implies that $y_{1}=\cdots=y_{s}=0$. This shows that the only linear combination of the vectors in $\mathcal{U} \cup \mathcal{W}$ which equals the zero vector is the trivial one, so that $\mathcal{U} \cup \mathcal{W}$ is linearly independent.
(c) Conclude from (a) and (b) that $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W$.

Proof. Parts (a) and (b) prove that $\mathcal{U} \cup \mathcal{W}$ is a basis of the vector space $U+W$. The set $\mathcal{U} \cup \mathcal{W}$ consists of $r+s$ vectors. Since all bases have the same size, we conclude that $\operatorname{dim}(U+W)=$ $r+s=\operatorname{dim} U+\operatorname{dim} W$.

