Proofs Homework Set 9

MATH 217 — Winter 2011

Due March 16

Problem 9.1.

(a) Let V be an n-dimensional vector space and let $T: V \rightarrow V$ be a linear transformation. Prove that if $\operatorname{Im}(T)=\operatorname{Ker}(T)$, then n is even.
(b) Give an example of such a transformation.

Problem 9.2. Let U and W be subspaces of a finite dimensional vector space V such that $U \cap W=\{\mathbf{0}\}$. Define their sum $U+W:=\{u+w \mid u \in U, w \in W\}$, which is also a subspace of V. Let \mathcal{U} be a basis for U and let \mathcal{W} be a basis for W.
(a) Show that $\operatorname{Span}(\mathcal{U} \cup \mathcal{W})=U+W$.
(b) Show that $\mathcal{U} \cup \mathcal{W}$ is linearly independent.
(c) Conclude from (a) and (b) that $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W$.

