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Due March 23

PROBLEM 10.1. Suppose that A and B are n × n matrices that commute (that is, AB = BA)
and suppose that B has n distinct eigenvalues.

(a) Show that if Bv = λv then BAv = λAv.

Proof. This follows from the fact that AB = BA. Indeed,

BAv = ABv = A(λv) = λAv

since scalar multiplication commutes with matrix multiplication.

(b) Show that every eigenvector for B is also an eigenvector for A.

Proof. Suppose v is an eigenvector ofB with eigenvalue λ. By part (a), we haveBAv = λAv.
So either Av = 0 or Av is also an eigenvector of B with eigenvalue λ. Since B has n distinct
eigenvalues, they all have multiplicity 1 which means that all of the eigenspaces of B are
one-dimensional (see Theorem 7(b) in Section 5.3). Since v and Av both lie in the one-
dimensional eigenspace of B corresponding to the eigenvalue λ, v and Av must be linearly
dependent. Since v 6= 0, this means that Av = µv for some scalar µ. Therefore, v is an
eigenvector of A corresponding to the eigenvalue µ.

(c) Show that the matrix A is diagonalizable.

Proof. Since B has n-distinct eigenvalues, we know that B is diagonalizable by Theorem 6 of
Section 5.3. Therefore B has n linearly independent eigenvectors v1, . . . ,vn by Theorem 5 of
Section 5.3. By part (b), the vectors v1, . . . ,vn are also eigenvectors of A. Therefore, A has
n linearly independent eigenvectors, which means that A is diagonalizable by Theorem 5 of
Section 5.3.

(d) Show that the matrix AB is diagonalizable.

Proof. By the solution of part (c) and Theorem 5 of Section 5.3, we have

A = PDP−1, B = PEP−1



where D and E are diagonal matrices and

P =
[
v1 · · · vn

]
.

Note that we get the same matrix P for A and B since v1, . . . ,vn are eigenvectors of both A
and B. However, the eigenvalues corresponding to these eigenvectors may be different for A
and B so we get different diagonal matrices D and E.

From this, we see that
AB = PDP−1PEP−1 = PDEP−1,

which shows that AB is diagonalizable since DE is a diagonal matrix.

PROBLEM 10.2. The sequence of Lucas numbers is defined by the recurrence formula

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

Thus, the sequence starts like this

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .

In this problem, you will use linear algebra to find an explicit formula for Ln, the nth Lucas
number.

Let A =

[
1 1
1 0

]
.

(a) Show that A
[
Ln

Ln−1

]
=

[
Ln+1

Ln

]
for each n ≥ 1.

Proof. We have

A

[
Ln

Ln−1

]
=

[
1 1
1 0

] [
Ln

Ln−1

]
=

[
Ln + Ln−1

Ln

]
=

[
Ln+1

Ln

]
since Ln+1 = Ln + Ln−1 by definition of the Lucas numbers.

(b) Use part (a) to prove by induction that An

[
1
2

]
=

[
Ln+1

Ln

]
holds for every n ≥ 0.

Proof. Base case. First note that A0 = I by definition. Therefore, A0

[
1
2

]
=

[
1
2

]
=

[
L1

L0

]
by

definition of L0 and L1.

Induction step. Suppose we know that An

[
1
2

]
=

[
Ln+1

Ln

]
; we want to show that An+1

[
1
2

]
=[

Ln+2

Ln+1

]
. Well, since An+1 = AAn, we see that

An+1

[
1
2

]
= A

(
An

[
1
2

])
= A

[
Ln+1

Ln

]
by the Induction Hypothesis. ButA

[
Ln+1

Ln

]
=

[
Ln+2

Ln+1

]
by part (a), and soAn+1

[
1
2

]
=

[
Ln+2

Ln+1

]
as claimed.



(c) Find the two eigenvalues for A. Call the positive one φ (this is the Greek letter “phi”) and
verify that the negative one is equal to −1/φ.

Proof. The characteristic equation of A is

det(A− λI) = det

[
1− λ 1
1 −λ

]
= (1− λ)(−λ)− 1 = λ2 − λ− 1.

The quadratic formula gives the two roots

1 +
√
5

2

1−
√
5

2
.

The first root is clearly positive, and so φ = 1
2
(1 +

√
5) = 1.61803 . . . (This is the famous

Golden Ratio!) The second root is negative, 1
2
(1−

√
5) = −0.61803 . . .

The fact that the second root is −1/φ can be checked by multiplying the two numbers:

1 +
√
5

2

1−
√
5

2
=

1−
√
5 +
√
5− 5

4
=
−4
4

= −1.

(d) Find eigenvectors corresponding to these two eigenvalues φ and −1/φ.

Proof. For the first eigenvalue φ, we have

A− φI =

[
1− φ 1
1 −φ

]
∼

[
1 −φ
0 0

]

and thus we find the corresponding eigenvector
[
φ
1

]
.

For the second eigenvalue −1/φ, we have

A+
1

φ
I =

[
1 + 1/φ 1

1 1/φ

]
∼

[
1 1/φ
0 0

]

and thus we find the corresponding eigenvector
[
−1/φ
1

]
.

(e) Find an invertible matrix P such that A = PDP−1 where D is a diagonal matrix.

Proof. By Theorem 5 of Section 5.3, we must have A = PDP−1 where

D =

[
φ 0
0 −1/φ

]
, P =

[
φ −1/φ
1 1

]
.

(f) First give an explicit formula for Dn and use this to give an explicit formula for An.



Proof. Powers of a diagonal matrix are easy to compute explicitly:

Dn =

[
φn 0
0 (−1/φ)n

]
.

Then we use the formula An = PDnP−1 to explicitly compute An as follows:

An =

[
φ −1/φ
1 1

] [
φn 0
0 (−1/φ)n

](
1

φ+ 1/φ

[
1 1/φ
−1 φ

])
which boils down to

An =
1

φ+ 1/φ

[
φn+1 − (−1/φ)n+1 φn − (−1/φ)n
φn − (−1/φ)n φn−1 − (1/φ)n−1

]
.

(g) Using parts (b) and (f), give an explicit formula for the nth Lucas number!

Proof. Using the formulas from parts (b) and (f), we obtain[
Ln+1

Ln

]
= An

[
1
2

]
=

1

φ+ 1/φ

[
φn+1 − (−1/φ)n+1 φn − (−1/φ)n
φn − (−1/φ)n φn−1 − (1/φ)n−1

] [
1
2

]
=

1

φ+ 1/φ

[
φn+1 − (−1/φ)n+1 + 2φn − 2(−1/φ)n
φn − (−1/φ)n + 2φn−1 − 2(−1/φ)n−1

]
=

[
φn+1 + (−1/φ)n+1

φn + (−1/φ)n
]
.

(For the last simplification step, it really helps to notice that φ + 1/φ = 1 + 2/φ = 2φ − 1.)
Therefore, we finally obtain the remarkable formula

Ln = φn + (−1/φ)n.


