Proofs Homework Set 10

MATH 217 — Winter 2011

Due March 23

Problem 10.1. Suppose that A and B are $n \times n$ matrices that commute (that is, $A B=B A$) and suppose that B has n distinct eigenvalues.
(a) Show that if $B \mathbf{v}=\lambda \mathbf{v}$ then $B A \mathbf{v}=\lambda A \mathbf{v}$.

Proof. This follows from the fact that $A B=B A$. Indeed,

$$
B A \mathbf{v}=A B \mathbf{v}=A(\lambda \mathbf{v})=\lambda A \mathbf{v}
$$

since scalar multiplication commutes with matrix multiplication.
(b) Show that every eigenvector for B is also an eigenvector for A.

Proof. Suppose \mathbf{v} is an eigenvector of B with eigenvalue λ. By part (a), we have $B A \mathbf{v}=\lambda A \mathbf{v}$. So either $A \mathbf{v}=\mathbf{0}$ or $A \mathbf{v}$ is also an eigenvector of B with eigenvalue λ. Since B has n distinct eigenvalues, they all have multiplicity 1 which means that all of the eigenspaces of B are one-dimensional (see Theorem 7(b) in Section 5.3). Since \mathbf{v} and $A v$ both lie in the onedimensional eigenspace of B corresponding to the eigenvalue λ, v and $A \mathrm{v}$ must be linearly dependent. Since $\mathbf{v} \neq \mathbf{0}$, this means that $A \mathbf{v}=\mu \mathbf{v}$ for some scalar μ. Therefore, \mathbf{v} is an eigenvector of A corresponding to the eigenvalue μ.
(c) Show that the matrix A is diagonalizable.

Proof. Since B has n-distinct eigenvalues, we know that B is diagonalizable by Theorem 6 of Section 5.3. Therefore B has n linearly independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ by Theorem 5 of Section 5.3. By part (b), the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are also eigenvectors of A. Therefore, A has n linearly independent eigenvectors, which means that A is diagonalizable by Theorem 5 of Section 5.3.
(d) Show that the matrix $A B$ is diagonalizable.

Proof. By the solution of part (c) and Theorem 5 of Section 5.3, we have

$$
A=P D P^{-1}, \quad B=P E P^{-1}
$$

where D and E are diagonal matrices and

$$
P=\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right]
$$

Note that we get the same matrix P for A and B since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are eigenvectors of both A and B. However, the eigenvalues corresponding to these eigenvectors may be different for A and B so we get different diagonal matrices D and E.
From this, we see that

$$
A B=P D P^{-1} P E P^{-1}=P D E P^{-1}
$$

which shows that $A B$ is diagonalizable since $D E$ is a diagonal matrix.
Problem 10.2. The sequence of Lucas numbers is defined by the recurrence formula

$$
L_{0}=2, \quad L_{1}=1, \quad L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2
$$

Thus, the sequence starts like this

$$
2,1,3,4,7,11,18,29,47,76,123, \ldots
$$

In this problem, you will use linear algebra to find an explicit formula for L_{n}, the nth Lucas number.

Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
(a) Show that $A\left[\begin{array}{c}L_{n} \\ L_{n-1}\end{array}\right]=\left[\begin{array}{c}L_{n+1} \\ L_{n}\end{array}\right]$ for each $n \geq 1$.

Proof. We have

$$
A\left[\begin{array}{c}
L_{n} \\
L_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
L_{n} \\
L_{n-1}
\end{array}\right]=\left[\begin{array}{c}
L_{n}+L_{n-1} \\
L_{n}
\end{array}\right]=\left[\begin{array}{c}
L_{n+1} \\
L_{n}
\end{array}\right]
$$

since $L_{n+1}=L_{n}+L_{n-1}$ by definition of the Lucas numbers.
(b) Use part (a) to prove by induction that $A^{n}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}L_{n+1} \\ L_{n}\end{array}\right]$ holds for every $n \geq 0$.

Proof. Base case. First note that $A^{0}=I$ by definition. Therefore, $A^{0}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}L_{1} \\ L_{0}\end{array}\right]$ by definition of L_{0} and L_{1}.
Induction step. Suppose we know that $A^{n}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}L_{n+1} \\ L_{n}\end{array}\right]$; we want to show that $A^{n+1}\left[\begin{array}{l}1 \\ 2\end{array}\right]=$ $\left[\begin{array}{l}L_{n+2} \\ L_{n+1}\end{array}\right]$. Well, since $A^{n+1}=A A^{n}$, we see that

$$
A^{n+1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=A\left(A^{n}\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=A\left[\begin{array}{c}
L_{n+1} \\
L_{n}
\end{array}\right]
$$

by the Induction Hypothesis. But $A\left[\begin{array}{c}L_{n+1} \\ L_{n}\end{array}\right]=\left[\begin{array}{l}L_{n+2} \\ L_{n+1}\end{array}\right]$ by part (a), and so $A^{n+1}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}L_{n+2} \\ L_{n+1}\end{array}\right]$ as claimed.
(c) Find the two eigenvalues for A. Call the positive one ϕ (this is the Greek letter "phi") and verify that the negative one is equal to $-1 / \phi$.

Proof. The characteristic equation of A is

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right]=(1-\lambda)(-\lambda)-1=\lambda^{2}-\lambda-1
$$

The quadratic formula gives the two roots

$$
\frac{1+\sqrt{5}}{2} \quad \frac{1-\sqrt{5}}{2}
$$

The first root is clearly positive, and so $\phi=\frac{1}{2}(1+\sqrt{5})=1.61803 \ldots$ (This is the famous
Golden Ratio!) The second root is negative, $\frac{1}{2}(1-\sqrt{5})=-0.61803 \ldots$
The fact that the second root is $-1 / \phi$ can be checked by multiplying the two numbers:

$$
\frac{1+\sqrt{5}}{2} \frac{1-\sqrt{5}}{2}=\frac{1-\sqrt{5}+\sqrt{5}-5}{4}=\frac{-4}{4}=-1
$$

(d) Find eigenvectors corresponding to these two eigenvalues ϕ and $-1 / \phi$.

Proof. For the first eigenvalue ϕ, we have

$$
A-\phi I=\left[\begin{array}{cc}
1-\phi & 1 \\
1 & -\phi
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -\phi \\
0 & 0
\end{array}\right]
$$

and thus we find the corresponding eigenvector $\left[\begin{array}{l}\phi \\ 1\end{array}\right]$.
For the second eigenvalue $-1 / \phi$, we have

$$
A+\frac{1}{\phi} I=\left[\begin{array}{cc}
1+1 / \phi & 1 \\
1 & 1 / \phi
\end{array}\right] \sim\left[\begin{array}{cc}
1 & 1 / \phi \\
0 & 0
\end{array}\right]
$$

and thus we find the corresponding eigenvector $\left[\begin{array}{c}-1 / \phi \\ 1\end{array}\right]$.
(e) Find an invertible matrix P such that $A=P D P^{-1}$ where D is a diagonal matrix.

Proof. By Theorem 5 of Section 5.3, we must have $A=P D P^{-1}$ where

$$
D=\left[\begin{array}{cc}
\phi & 0 \\
0 & -1 / \phi
\end{array}\right], \quad P=\left[\begin{array}{cc}
\phi & -1 / \phi \\
1 & 1
\end{array}\right] .
$$

(f) First give an explicit formula for D^{n} and use this to give an explicit formula for A^{n}.

Proof. Powers of a diagonal matrix are easy to compute explicitly:

$$
D^{n}=\left[\begin{array}{cc}
\phi^{n} & 0 \\
0 & (-1 / \phi)^{n}
\end{array}\right] .
$$

Then we use the formula $A^{n}=P D^{n} P^{-1}$ to explicitly compute A^{n} as follows:

$$
A^{n}=\left[\begin{array}{cc}
\phi & -1 / \phi \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\phi^{n} & 0 \\
0 & (-1 / \phi)^{n}
\end{array}\right]\left(\frac{1}{\phi+1 / \phi}\left[\begin{array}{cc}
1 & 1 / \phi \\
-1 & \phi
\end{array}\right]\right)
$$

which boils down to

$$
A^{n}=\frac{1}{\phi+1 / \phi}\left[\begin{array}{cc}
\phi^{n+1}-(-1 / \phi)^{n+1} & \phi^{n}-(-1 / \phi)^{n} \\
\phi^{n}-(-1 / \phi)^{n} & \phi^{n-1}-(1 / \phi)^{n-1}
\end{array}\right] .
$$

(g) Using parts (b) and (f), give an explicit formula for the nth Lucas number!

Proof. Using the formulas from parts (b) and (f), we obtain

$$
\begin{aligned}
{\left[\begin{array}{c}
L_{n+1} \\
L_{n}
\end{array}\right]=A^{n}\left[\begin{array}{l}
1 \\
2
\end{array}\right] } & =\frac{1}{\phi+1 / \phi}\left[\begin{array}{cc}
\phi^{n+1}-(-1 / \phi)^{n+1} & \phi^{n}-(-1 / \phi)^{n} \\
\phi^{n}-(-1 / \phi)^{n} & \phi^{n-1}-(1 / \phi)^{n-1}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\frac{1}{\phi+1 / \phi}\left[\begin{array}{c}
\phi^{n+1}-(-1 / \phi)^{n+1}+2 \phi^{n}-2(-1 / \phi)^{n} \\
\phi^{n}-(-1 / \phi)^{n}+2 \phi^{n-1}-2(-1 / \phi)^{n-1}
\end{array}\right] \\
& =\left[\begin{array}{c}
\phi^{n+1}+(-1 / \phi)^{n+1} \\
\phi^{n}+(-1 / \phi)^{n}
\end{array}\right] .
\end{aligned}
$$

(For the last simplification step, it really helps to notice that $\phi+1 / \phi=1+2 / \phi=2 \phi-1$.) Therefore, we finally obtain the remarkable formula

$$
L_{n}=\phi^{n}+(-1 / \phi)^{n} .
$$

