Proofs Homework Set 10

Math 217 - Winter 2011

Due March 23

Problem 10.1. Suppose that A and B are $n \times n$ matrices that commute (that is, $A B=B A$) and suppose that B has n distinct eigenvalues.
(a) Show that if $B \mathbf{v}=\lambda \mathbf{v}$ then $B A \mathbf{v}=\lambda A \mathbf{v}$.
(b) Show that every eigenvector for B is also an eigenvector for A.
(c) Show that the matrix A is diagonalizable.
(d) Show that the matrix $A B$ is diagonalizable.

Problem 10.2. The sequence of Lucas numbers is defined by the recurrence formula

$$
L_{0}=2, \quad L_{1}=1, \quad L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2 .
$$

Thus, the sequence starts like this

$$
2,1,3,4,7,11,18,29,47,76,123, \ldots
$$

In this problem, you will use linear algebra to find an explicit formula for L_{n}, the nth Lucas number.

Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
(a) Show that $A\left[\begin{array}{c}L_{n} \\ L_{n-1}\end{array}\right]=\left[\begin{array}{c}L_{n+1} \\ L_{n}\end{array}\right]$ for each $n \geq 1$.
(b) Use part (a) to prove by induction that $A^{n}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}L_{n+1} \\ L_{n}\end{array}\right]$ holds for every $n \geq 0$.
(c) Find the two eigenvalues for A. Call the positive one ϕ (this is the Greek letter "phi") and verify that the negative one is equal to $-1 / \phi$.
(d) Find eigenvectors corresponding to these two eigenvalues ϕ and $-1 / \phi$.
(e) Find an invertible matrix P such that $A=P D P^{-1}$ where D is a diagonal matrix.
(f) First give an explicit formula for D^{n} and use this to give an explicit formula for A^{n}.
(g) Using parts (b) and (f), give an explicit formula for the nth Lucas number!

