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PROBLEM 11.1. Let A be an n× n real symmetric matrix; i.e. all entries of A are real numbers
and AT = A. Let v ∈ Cn be an eigenvector of A corresponding to the eigenvalue λ ∈ C, and write

v̄ =

v̄1...
v̄n

.

(Recall that the complex conjugate of a complex number z = a + bi, a, b ∈ R, is the complex
number z̄ = a− bi. See Appendix B of the book for properties of the complex conjugate.)

(a) Show that Av̄ = λ̄v̄ (so v̄ is an eigenvector of A with eigenvalue λ̄).

Proof. Taking the complex conjugate of Av = λv, we obtain Av̄ = Av = λv = λ̄v̄. To see
this, we repeatedly use the fact that w + z = w̄ + z̄ and wz = w̄z̄ holds for all w, z ∈ C. For
the right hand side, we have

λv =

λv1...
λvn

 =

λ̄v̄1...
λ̄v̄n

 = λ̄v̄.

For the left hand side, we have

Av =

a11v1 + · · ·+ a1nvn
...

an1v1 + · · ·+ annvn

 =

ā11v̄1 + · · ·+ ā1nv̄n
...

ān1v̄1 + · · ·+ ānnv̄n

 =

a11v̄1 + · · ·+ a1nv̄n
...

an1v̄1 + · · ·+ annv̄n

 = Av̄,

where we used the fact that all enties of A are real (so āij = aij).

(b) Show that v̄TAv = λ̄v̄Tv and that v̄TAv = λv̄Tv.

Proof. Taking the transpose of the equation Av̄ = λ̄v̄ from (a), we obtain

v̄TA = v̄TAT = λ̄v̄T .

Multiplying on the right by v gives

v̄TAv = λ̄v̄Tv.

Multiplying the equation Av = λv on the left by v̄T gives

v̄TAv = λv̄Tv.



(c) Show that v̄Tv = v̄1v1 + · · ·+ v̄nvn is a positive real number.

Proof. Let us write vk = ak + ibk where ak, bk ∈ R. Then

v̄1v1 + · · ·+ v̄nvn = (a1 − ib1)(a1 + ib1) + · · ·+ (an − ibn)(an + ibn)

= (a21 + b21) + · · ·+ (a2n + b2n).

Since a sum of squares is nonnegative, we know that the result is a nonnegative real number.
To see that the sum is nonzero, we use the fact that v 6= 0 (since v is an eigenvector). It follows
that vk = ak + ibk 6= 0 for some k, and hence the summand a2k + b2k cannot be zero either.

(d) Conclude that λ = λ̄ and hence λ ∈ R.

Proof. From part (b), we conclude that λ̄v̄Tv = λv̄Tv. Since v̄Tv is a nonzero number by
part (c), we can divide both sides of this equation by this number to obtain that λ̄ = λ, which
is only possible when λ ∈ R.

Therefore, the eigenvalues of a real symmetric matrix are always real numbers.

PROBLEM 11.2. For a polynomial p(x) and an n × n matrix A, let p(A) denote the matrix
obtained by “plugging in”A for x. For example, if p(x) = x3−2x2+3, then p(A) = A3−2A2+3I .

(a) Show that if λ is an eigenvalue of an n×n matrix A, prove that p(λ) is an eigenvalue of p(A).

Proof. For conciseness, let us write

p(x) = amx
m + am−1x

m−1 + · · ·+ a1x+ a0.

Let v be an eigenvector of A with eigenvalue λ. Consider p(A)v. Since Akv = λkv for every
k, we see that

p(A)v = amA
mv + am−1A

m−1v + · · ·+ a1Av + a0Iv

= amλ
mv + am−1λ

m−1 + · · ·+ a1λv + a0v

= (amλ
m + am−1λ

m−1 + · · ·+ a1λ+ a0)v

Therefore, p(A)v = p(λ)v which shows that p(λ) is an eigenvalue of the matrix p(A).

(b) Show that if A is similar to B, then p(A) is simlar to p(B).

Proof. Suppose that A = P−1BP , i.e. that A is similar to B via the invertible matrix P . As
above, let us write

p(x) = amx
m + am−1x

m−1 + · · ·+ a1x+ a0.

Since An = P−1BnP , we see that

p(A) = amA
m + am−1A

m−1 + · · ·+ a1A+ a0I

= amP
−1BmP + am−1P

−1Bm−1P + · · ·+ a1P
−1AP + a0P

−1P.



Factoring P−1 on the left and factoring P on the right, we obtain that

p(A) = amP
−1BmP + am−1P

−1Bm−1P + · · ·+ a1P
−1AP + a0P

−1P

= P−1(amB
m + am−1B

m−1 + · · ·+ a1B + a0I)P = P−1p(B)P.

Therefore, p(A) is similar to p(B).

(c) Show that if A is diagonalizable and p(λ) is the characteristic polynomial of A, then p(A) is
the zero matrix.

Proof. The hypotheses say that A = P−1DP where P is some invertible matrix and D is the
diagonal matrix

D =


λ1 0 · · · 0
0 λ2 · · · 0
... . . . ...
0 0 · · · λn


with λ1, λ2, . . . , λn being the eigenvalues of A. Note that these scalars λ1, λ2, . . . , λn are
precisely the roots of the characteristic polynomial of A, namely

p(λ) = det(A− λI) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0.

By part (b), we see that p(A) is similar to the matrix p(D). Now we can readily compute p(D)
as follows:

p(D) = anD
n + · · ·+ a1D + a0I

= an


λn1 0 · · · 0
0 λn2 · · · 0
... . . . ...
0 0 · · · λnn

 + · · ·+ a1


λ1 0 · · · 0
0 λ2 · · · 0
... . . . ...
0 0 · · · λn

 + a0


1 0 · · · 0
0 1 · · · 0
... . . . ...
0 0 · · · 1



=


p(λ1) 0 · · · 0

0 p(λ2) · · · 0
... . . . ...
0 0 · · · p(λn)

 .
Since p(λi) = 0 for i = 1, 2, . . . , n, we see that p(D) is simply the zero matrix. Therefore,
p(A) = P−1p(D)P is the zero matrix too.


