Proofs Homework Set 11

MATH 217 — WINTER 2011

Due March 30

PROBLEM 11.1. Let A be an $n \times n$ real symmetric matrix; *i.e.* all entries of A are real numbers and $A^T = A$. Let $\mathbf{v} \in \mathbb{C}^n$ be an eigenvector of A corresponding to the eigenvalue $\lambda \in \mathbb{C}$, and write $\lceil \bar{v}_1 \rceil$

$$\left[\bar{v}_n\right]$$

(Recall that the complex conjugate of a complex number z = a + bi, $a, b \in \mathbb{R}$, is the complex number $\bar{z} = a - bi$. See Appendix B of the book for properties of the complex conjugate.)

(a) Show that $A\bar{\mathbf{v}} = \bar{\lambda}\bar{\mathbf{v}}$ (so $\bar{\mathbf{v}}$ is an eigenvector of A with eigenvalue $\bar{\lambda}$).

Proof. Taking the complex conjugate of $A\mathbf{v} = \lambda \mathbf{v}$, we obtain $A\bar{\mathbf{v}} = \overline{A\mathbf{v}} = \overline{\lambda}\bar{\mathbf{v}} = \overline{\lambda}\bar{\mathbf{v}}$. To see this, we repeatedly use the fact that $\overline{w+z} = \overline{w} + \overline{z}$ and $\overline{wz} = \overline{w}\overline{z}$ holds for all $w, z \in \mathbb{C}$. For the right hand side, we have

$$\overline{\lambda \mathbf{v}} = \begin{bmatrix} \overline{\lambda v_1} \\ \vdots \\ \overline{\lambda v_n} \end{bmatrix} = \begin{bmatrix} \overline{\lambda} \overline{v}_1 \\ \vdots \\ \overline{\lambda} \overline{v}_n \end{bmatrix} = \overline{\lambda} \overline{\mathbf{v}}$$

For the left hand side, we have

$$\overline{A\mathbf{v}} = \begin{bmatrix} \overline{a_{11}v_1 + \dots + a_{1n}v_n} \\ \vdots \\ \overline{a_{n1}v_1 + \dots + a_{nn}v_n} \end{bmatrix} = \begin{bmatrix} \overline{a}_{11}\overline{v}_1 + \dots + \overline{a}_{1n}\overline{v}_n \\ \vdots \\ \overline{a}_{n1}\overline{v}_1 + \dots + \overline{a}_{nn}\overline{v}_n \end{bmatrix} = \begin{bmatrix} a_{11}\overline{v}_1 + \dots + a_{1n}\overline{v}_n \\ \vdots \\ a_{n1}\overline{v}_1 + \dots + a_{nn}\overline{v}_n \end{bmatrix} = A\overline{\mathbf{v}},$$
where we used the fact that all enties of A are real (so $\overline{a}_{ii} = a_{ii}$).

where we used the fact that all entires of A are real (so $\bar{a}_{ij} = a_{ij}$).

(b) Show that $\bar{\mathbf{v}}^T A \mathbf{v} = \bar{\lambda} \bar{\mathbf{v}}^T \mathbf{v}$ and that $\bar{\mathbf{v}}^T A \mathbf{v} = \lambda \bar{\mathbf{v}}^T \mathbf{v}$.

Proof. Taking the transpose of the equation $A\bar{\mathbf{v}} = \bar{\lambda}\bar{\mathbf{v}}$ from (a), we obtain

$$\bar{\mathbf{v}}^T A = \bar{\mathbf{v}}^T A^T = \bar{\lambda} \bar{\mathbf{v}}^T.$$

Multiplying on the right by v gives

$$\bar{\mathbf{v}}^T A \mathbf{v} = \bar{\lambda} \bar{\mathbf{v}}^T \mathbf{v}.$$

Multiplying the equation $A\mathbf{v} = \lambda \mathbf{v}$ on the left by $\bar{\mathbf{v}}^T$ gives

$$\bar{\mathbf{v}}^T A \mathbf{v} = \lambda \bar{\mathbf{v}}^T \mathbf{v}. \quad \Box$$

(c) Show that $\bar{\mathbf{v}}^T \mathbf{v} = \bar{v}_1 v_1 + \cdots + \bar{v}_n v_n$ is a positive real number.

Proof. Let us write $v_k = a_k + ib_k$ where $a_k, b_k \in \mathbb{R}$. Then

$$\bar{v}_1 v_1 + \dots + \bar{v}_n v_n = (a_1 - ib_1)(a_1 + ib_1) + \dots + (a_n - ib_n)(a_n + ib_n)$$
$$= (a_1^2 + b_1^2) + \dots + (a_n^2 + b_n^2).$$

Since a sum of squares is nonnegative, we know that the result is a nonnegative real number. To see that the sum is nonzero, we use the fact that $\mathbf{v} \neq \mathbf{0}$ (since \mathbf{v} is an eigenvector). It follows that $v_k = a_k + ib_k \neq 0$ for some k, and hence the summand $a_k^2 + b_k^2$ cannot be zero either. \Box

(d) Conclude that $\lambda = \overline{\lambda}$ and hence $\lambda \in \mathbb{R}$.

Proof. From part (b), we conclude that $\overline{\lambda} \overline{\mathbf{v}}^T \mathbf{v} = \lambda \overline{\mathbf{v}}^T \mathbf{v}$. Since $\overline{\mathbf{v}}^T \mathbf{v}$ is a nonzero number by part (c), we can divide both sides of this equation by this number to obtain that $\overline{\lambda} = \lambda$, which is only possible when $\lambda \in \mathbb{R}$.

Therefore, the eigenvalues of a real symmetric matrix are always real numbers.

PROBLEM 11.2. For a polynomial p(x) and an $n \times n$ matrix A, let p(A) denote the matrix obtained by "plugging in" A for x. For example, if $p(x) = x^3 - 2x^2 + 3$, then $p(A) = A^3 - 2A^2 + 3I$.

(a) Show that if λ is an eigenvalue of an $n \times n$ matrix A, prove that $p(\lambda)$ is an eigenvalue of p(A).

Proof. For conciseness, let us write

$$p(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0.$$

Let v be an eigenvector of A with eigenvalue λ . Consider p(A)v. Since $A^k v = \lambda^k v$ for every k, we see that

$$p(A)\mathbf{v} = a_m A^m \mathbf{v} + a_{m-1} A^{m-1} \mathbf{v} + \dots + a_1 A \mathbf{v} + a_0 I \mathbf{v}$$
$$= a_m \lambda^m \mathbf{v} + a_{m-1} \lambda^{m-1} + \dots + a_1 \lambda \mathbf{v} + a_0 \mathbf{v}$$
$$= (a_m \lambda^m + a_{m-1} \lambda^{m-1} + \dots + a_1 \lambda + a_0) \mathbf{v}$$

Therefore, $p(A)\mathbf{v} = p(\lambda)\mathbf{v}$ which shows that $p(\lambda)$ is an eigenvalue of the matrix p(A).

(b) Show that if A is similar to B, then p(A) is similar to p(B).

Proof. Suppose that $A = P^{-1}BP$, i.e. that A is similar to B via the invertible matrix P. As above, let us write

$$p(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0.$$

Since $A^n = P^{-1}B^n P$, we see that

$$p(A) = a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 I$$

= $a_m P^{-1} B^m P + a_{m-1} P^{-1} B^{m-1} P + \dots + a_1 P^{-1} A P + a_0 P^{-1} P.$

Factoring P^{-1} on the left and factoring P on the right, we obtain that

$$p(A) = a_m P^{-1} B^m P + a_{m-1} P^{-1} B^{m-1} P + \dots + a_1 P^{-1} A P + a_0 P^{-1} P$$

= $P^{-1} (a_m B^m + a_{m-1} B^{m-1} + \dots + a_1 B + a_0 I) P = P^{-1} p(B) P.$

Therefore, p(A) is similar to p(B).

(c) Show that if A is diagonalizable and $p(\lambda)$ is the characteristic polynomial of A, then p(A) is the zero matrix.

Proof. The hypotheses say that $A = P^{-1}DP$ where P is some invertible matrix and D is the diagonal matrix

$$D = \begin{vmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{vmatrix}$$

with $\lambda_1, \lambda_2, \ldots, \lambda_n$ being the eigenvalues of A. Note that these scalars $\lambda_1, \lambda_2, \ldots, \lambda_n$ are precisely the roots of the characteristic polynomial of A, namely

$$p(\lambda) = \det(A - \lambda I) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0.$$

By part (b), we see that p(A) is similar to the matrix p(D). Now we can readily compute p(D) as follows:

$$\begin{split} p(D) &= a_n D^n + \dots + a_1 D + a_0 I \\ &= a_n \begin{bmatrix} \lambda_1^n & 0 & \cdots & 0 \\ 0 & \lambda_2^n & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^n \end{bmatrix} + \dots + a_1 \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} + a_0 \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \\ &= \begin{bmatrix} p(\lambda_1) & 0 & \cdots & 0 \\ 0 & p(\lambda_2) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p(\lambda_n) \end{bmatrix} . \end{split}$$

Since $p(\lambda_i) = 0$ for i = 1, 2, ..., n, we see that p(D) is simply the zero matrix. Therefore, $p(A) = P^{-1}p(D)P$ is the zero matrix too.