Proofs Homework Set 11

MATH 217 — Winter 2011

Due March 30

Problem 11.1. Let A be an $n \times n$ real symmetric matrix; i.e. all entries of A are real numbers and $A^{T}=A$. Let $\mathbf{v} \in \mathbb{C}^{n}$ be an eigenvector of A corresponding to the eigenvalue $\lambda \in \mathbb{C}$, and write $\overline{\mathbf{v}}=\left[\begin{array}{c}\bar{v}_{1} \\ \vdots \\ \bar{v}_{n}\end{array}\right]$.
(Recall that the complex conjugate of a complex number $z=a+b i, a, b \in \mathbb{R}$, is the complex number $\bar{z}=a-b i$. See Appendix B of the book for properties of the complex conjugate.)
(a) Show that $A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$ (so $\overline{\mathbf{v}}$ is an eigenvector of A with eigenvalue $\bar{\lambda}$).

Proof. Taking the complex conjugate of $A \mathbf{v}=\lambda \mathbf{v}$, we obtain $A \overline{\mathbf{v}}=\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$. To see this, we repeatedly use the fact that $\overline{w+z}=\bar{w}+\bar{z}$ and $\overline{w z}=\bar{w} \bar{z}$ holds for all $w, z \in \mathbb{C}$. For the right hand side, we have

$$
\overline{\lambda \mathbf{v}}=\left[\begin{array}{c}
\overline{\lambda v_{1}} \\
\vdots \\
\overline{\lambda v_{n}}
\end{array}\right]=\left[\begin{array}{c}
\bar{\lambda} \bar{v}_{1} \\
\vdots \\
\bar{\lambda} \bar{v}_{n}
\end{array}\right]=\bar{\lambda} \overline{\mathbf{v}} .
$$

For the left hand side, we have

$$
\overline{A \mathbf{v}}=\left[\begin{array}{c}
\overline{a_{11} v_{1}+\cdots+a_{1 n} v_{n}} \\
\vdots \\
\overline{a_{n 1} v_{1}+\cdots+a_{n n} v_{n}}
\end{array}\right]=\left[\begin{array}{c}
\bar{a}_{11} \bar{v}_{1}+\cdots+\bar{a}_{1 n} \bar{v}_{n} \\
\vdots \\
\bar{a}_{n 1} \bar{v}_{1}+\cdots+\bar{a}_{n n} \bar{v}_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} \bar{v}_{1}+\cdots+a_{1 n} \bar{v}_{n} \\
\vdots \\
a_{n 1} \bar{v}_{1}+\cdots+a_{n n} \bar{v}_{n}
\end{array}\right]=A \overline{\mathbf{v}},
$$

where we used the fact that all enties of A are real (so $\bar{a}_{i j}=a_{i j}$).
(b) Show that $\overline{\mathbf{v}}^{T} A \mathbf{v}=\bar{\lambda} \overline{\mathbf{v}}^{T} \mathbf{v}$ and that $\overline{\mathbf{v}}^{T} A \mathbf{v}=\lambda \overline{\mathbf{v}}^{T} \mathbf{v}$.

Proof. Taking the transpose of the equation $A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$ from (a), we obtain

$$
\overline{\mathbf{v}}^{T} A=\overline{\mathbf{v}}^{T} A^{T}=\bar{\lambda} \overline{\mathbf{v}}^{T}
$$

Multiplying on the right by v gives

$$
\overline{\mathbf{v}}^{T} A \mathbf{v}=\bar{\lambda} \overline{\mathbf{v}}^{T} \mathbf{v}
$$

Multiplying the equation $A \mathbf{v}=\lambda \mathbf{v}$ on the left by $\overline{\mathbf{v}}^{T}$ gives

$$
\overline{\mathbf{v}}^{T} A \mathbf{v}=\lambda \overline{\mathbf{v}}^{T} \mathbf{v}
$$

(c) Show that $\overline{\mathbf{v}}^{T} \mathbf{v}=\bar{v}_{1} v_{1}+\cdots+\bar{v}_{n} v_{n}$ is a positive real number.

Proof. Let us write $v_{k}=a_{k}+i b_{k}$ where $a_{k}, b_{k} \in \mathbb{R}$. Then

$$
\begin{aligned}
\bar{v}_{1} v_{1}+\cdots+\bar{v}_{n} v_{n} & =\left(a_{1}-i b_{1}\right)\left(a_{1}+i b_{1}\right)+\cdots+\left(a_{n}-i b_{n}\right)\left(a_{n}+i b_{n}\right) \\
& =\left(a_{1}^{2}+b_{1}^{2}\right)+\cdots+\left(a_{n}^{2}+b_{n}^{2}\right) .
\end{aligned}
$$

Since a sum of squares is nonnegative, we know that the result is a nonnegative real number. To see that the sum is nonzero, we use the fact that $\mathbf{v} \neq \mathbf{0}$ (since \mathbf{v} is an eigenvector). It follows that $v_{k}=a_{k}+i b_{k} \neq 0$ for some k, and hence the summand $a_{k}^{2}+b_{k}^{2}$ cannot be zero either.
(d) Conclude that $\lambda=\bar{\lambda}$ and hence $\lambda \in \mathbb{R}$.

Proof. From part (b), we conclude that $\bar{\lambda} \overline{\mathbf{v}}^{T} \mathbf{v}=\lambda \overline{\mathbf{v}}^{T} \mathbf{v}$. Since $\overline{\mathbf{v}}^{T} \mathbf{v}$ is a nonzero number by part (c), we can divide both sides of this equation by this number to obtain that $\bar{\lambda}=\lambda$, which is only possible when $\lambda \in \mathbb{R}$.

Therefore, the eigenvalues of a real symmetric matrix are always real numbers.
Problem 11.2. For a polynomial $p(x)$ and an $n \times n$ matrix A, let $p(A)$ denote the matrix obtained by "plugging in" A for x. For example, if $p(x)=x^{3}-2 x^{2}+3$, then $p(A)=A^{3}-2 A^{2}+3 I$.
(a) Show that if λ is an eigenvalue of an $n \times n$ matrix A, prove that $p(\lambda)$ is an eigenvalue of $p(A)$.

Proof. For conciseness, let us write

$$
p(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0} .
$$

Let \mathbf{v} be an eigenvector of A with eigenvalue λ. Consider $p(A) \mathbf{v}$. Since $A^{k} \mathbf{v}=\lambda^{k} \mathbf{v}$ for every k, we see that

$$
\begin{aligned}
p(A) \mathbf{v} & =a_{m} A^{m} \mathbf{v}+a_{m-1} A^{m-1} \mathbf{v}+\cdots+a_{1} A \mathbf{v}+a_{0} I \mathbf{v} \\
& =a_{m} \lambda^{m} \mathbf{v}+a_{m-1} \lambda^{m-1}+\cdots+a_{1} \lambda \mathbf{v}+a_{0} \mathbf{v} \\
& =\left(a_{m} \lambda^{m}+a_{m-1} \lambda^{m-1}+\cdots+a_{1} \lambda+a_{0}\right) \mathbf{v}
\end{aligned}
$$

Therefore, $p(A) \mathbf{v}=p(\lambda) \mathbf{v}$ which shows that $p(\lambda)$ is an eigenvalue of the matrix $p(A)$.
(b) Show that if A is similar to B, then $p(A)$ is simlar to $p(B)$.

Proof. Suppose that $A=P^{-1} B P$, i.e. that A is similar to B via the invertible matrix P. As above, let us write

$$
p(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0} .
$$

Since $A^{n}=P^{-1} B^{n} P$, we see that

$$
\begin{aligned}
p(A) & =a_{m} A^{m}+a_{m-1} A^{m-1}+\cdots+a_{1} A+a_{0} I \\
& =a_{m} P^{-1} B^{m} P+a_{m-1} P^{-1} B^{m-1} P+\cdots+a_{1} P^{-1} A P+a_{0} P^{-1} P .
\end{aligned}
$$

Factoring P^{-1} on the left and factoring P on the right, we obtain that

$$
\begin{aligned}
p(A) & =a_{m} P^{-1} B^{m} P+a_{m-1} P^{-1} B^{m-1} P+\cdots+a_{1} P^{-1} A P+a_{0} P^{-1} P \\
& =P^{-1}\left(a_{m} B^{m}+a_{m-1} B^{m-1}+\cdots+a_{1} B+a_{0} I\right) P=P^{-1} p(B) P
\end{aligned}
$$

Therefore, $p(A)$ is similar to $p(B)$.
(c) Show that if A is diagonalizable and $p(\lambda)$ is the characteristic polynomial of A, then $p(A)$ is the zero matrix.

Proof. The hypotheses say that $A=P^{-1} D P$ where P is some invertible matrix and D is the diagonal matrix

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ being the eigenvalues of A. Note that these scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are precisely the roots of the characteristic polynomial of A, namely

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0} .
$$

By part (b), we see that $p(A)$ is similar to the matrix $p(D)$. Now we can readily compute $p(D)$ as follows:

$$
\begin{aligned}
p(D) & =a_{n} D^{n}+\cdots+a_{1} D+a_{0} I \\
& =a_{n}\left[\begin{array}{cccc}
\lambda_{1}^{n} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{n} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}^{n}
\end{array}\right]+\cdots+a_{1}\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]+a_{0}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
p\left(\lambda_{1}\right) & 0 & \cdots & 0 \\
0 & p\left(\lambda_{2}\right) & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & p\left(\lambda_{n}\right)
\end{array}\right] .
\end{aligned}
$$

Since $p\left(\lambda_{i}\right)=0$ for $i=1,2, \ldots, n$, we see that $p(D)$ is simply the zero matrix. Therefore, $p(A)=P^{-1} p(D) P$ is the zero matrix too.

