Proofs Homework Set 11

MATH 217 — Winter 2011

Due March 30

Problem 11.1. Let A be an $n \times n$ real symmetric matrix; i.e. all entries of A are real numbers and $A^{T}=A$. Let $\mathbf{v} \in \mathbb{C}^{n}$ be an eigenvector of A corresponding to the eigenvalue $\lambda \in \mathbb{C}$, and write $\overline{\mathbf{v}}=\left[\begin{array}{c}\bar{v}_{1} \\ \vdots \\ \bar{v}_{n}\end{array}\right]$.
(Recall that the complex conjugate of a complex number $z=a+b i, a, b \in \mathbb{R}$, is the complex number $\bar{z}=a-b i$. See Appendix B of the book for properties of the complex conjugate.)
(a) Show that $A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$ (so $\overline{\mathbf{v}}$ is an eigenvector of A with eigenvalue $\bar{\lambda}$).
(b) Show that $\overline{\mathbf{v}}^{T} A \mathbf{v}=\bar{\lambda} \overline{\mathbf{v}}^{T} \mathbf{v}$ and that $\overline{\mathbf{v}}^{T} A \mathbf{v}=\lambda \overline{\mathbf{v}}^{T} \mathbf{v}$.
(c) Show that $\overline{\mathbf{v}}^{T} \mathbf{v}=\bar{v}_{1} v_{1}+\cdots+\bar{v}_{n} v_{n}$ is a positive real number.
(d) Conclude that $\lambda=\bar{\lambda}$ and hence $\lambda \in \mathbb{R}$.

Therefore, the eigenvalues of a real symmetric matrix are always real numbers.
Problem 11.2. For a polynomial $p(x)$ and an $n \times n$ matrix A, let $p(A)$ denote the matrix obtained by "plugging in" A for x. For example, if $p(x)=x^{3}-2 x^{2}+3$, then $p(A)=A^{3}-2 A^{2}+3 I$.
(a) Show that if λ is an eigenvalue of an $n \times n$ matrix A, prove that $p(\lambda)$ is an eigenvalue of $p(A)$.
(b) Show that if A is similar to B, then $p(A)$ is simlar to $p(B)$.
(c) Show that if A is diagonalizable and $p(\lambda)$ is the characteristic polynomial of A, then $p(A)$ is the zero matrix.

