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PROBLEM 13.1. Let B = {b1, . . . ,bn} be a basis for Rn. Recall from the previous assignment
that we defined the inner product 〈u,v〉B = [u]B · [v]B.

(a) Find a matrix M such that 〈u,v〉B = uTMv.

Proof. Let P =
[
b1 b2 · · · bn

]
. This invertible matrix satisfies the equation v = P [v]B

or, equivalently, [v]B = P−1v for every vector v ∈ Rn. By definition of 〈•, •〉B, we then have
that

〈u,v〉B = [u]B · [v]B = (P−1u) · (P−1v)
= (P−1u)T (P−1v) = uT (P−1)TP−1v.

Therefore the matrix M = (P−1)TP−1 works as directed.

(b) Show that if B = {b1, . . . ,bn} is an orthonormal basis, then 〈u,v〉B = u ·v for all u,v ∈ Rn.

Proof. In this case, the matrix U =
[
b1 b2 · · · bn

]
has orthonormal columns. Therefore

UTU = I by Theorem 6.6. By the Invertible Matrix Theorem, it follows that U−1 = UT . The
formula for the matrix M of part (a) then becomes

M = (U−1)TU−1 = (UT )TUT = UUT = UU−1 = I.

Thus, 〈u,v〉B = uTv = u · v for all u,v ∈ Rn.

(c) Find an example to show that part (b) is not necessarily true if B is not an orthonormal basis.

Proof. Consider the basis b1 =

[
1
0

]
,b2 =

[
1
1

]
for R2. The B-coordinates of these basis

vectors are [b1]B =

[
1
0

]
and [b2]B =

[
0
1

]
. Therefore 〈b1,b2〉B = [b1]B · [b2]B = 0, but

b1 · b2 = 1.

(d) Suppose now that B = {b1, . . . ,bn} is an orthonormal basis for Rn and let T : Rn → Rn be a
linear transformation. Prove that the i, j entry of [T ]B is 〈T (bj),bi〉B.



Proof. The B-matrix of T is given by the formula

[T ]B =
[
[T (b1)]B [T (b2)]B · · · [T (bn)]B

]
.

By Theorem 6.5, we may compute the B-coordinates of T (bj) via the formula

T (bj) = (T (bj) · b1)b1 + (T (bj) · b2)b2 + · · ·+ (T (bj) · bn)bn.

(This formula is a little simpler than that of Theorem 6.5 because each bi is a unit vector,
which means that bi · bi = 1.) Therefore, we have

[T (bj)]B =


T (bj) · b1

T (bj) · b2
...

T (bj) · bn

 .

It follows that the i, j entry of [T ]B is T (bj) · bi, which equals 〈T (bj),bi〉B by part (b).

PROBLEM 13.2. Let W be a subspace of Rn, and let T : Rn → Rn be the linear transformation
given by T (x) = projW (x).

(a) Show that for every x ∈ Rn, ||T (x)|| ≤ ||x||.

Proof. By Theorem 6.8, we may write

x = T (x) + z,

where T (x) ∈ W and z ∈ W⊥. Note that this means that T (x) · z = 0. Therefore

||x||2 = x · x = (T (x) + z) · (T (x) + z)

= T (x) · T (x) + 2(T (x) · z) + z · z
= ||T (x)||2 + ||z||2.

Since ||z||2 ≥ 0, we conclude that ||x||2 ≥ ||T (x)||2. This last inequality is equivalent to
||x|| ≥ ||T (x)|| since lengths are nonnegative quantities.

(b) Show that for every x ∈ Rn, x · T (x) ≥ 0.

Proof. As in part (a), let us write x = T (x) + z where z ∈ W⊥. Then

x · T (x) = (T (x) + z) · T (x) = T (x) · T (x) + z · T (x) = T (x) · T (x)

since z ·T (x) = 0. Since T (x) ·T (x) ≥ 0 by Theorem 6.1(d), it follows that x ·T (x) ≥ 0.

(c) Define S : Rn → Rn by S(x) = x − T (x). Show that this is the orthogonal projection onto
W⊥.



Proof. By Theorem 6.8, we have a unique decomposition

x = projW (x) + z = T (x) + S(x)

where T (x) = projW (x) ∈ W and S(x) = z ∈ W⊥. Note that T (x) ∈ (W⊥)⊥ since
T (x) · v = 0 for every v ∈ W⊥. (In fact, it is not difficult to show that (W⊥)⊥ = W .)

By Theorem 6.8 again, we have a unique decomposition

x = projW⊥(x) + z′

where projW⊥(x) ∈ W⊥ and z′ ∈ (W⊥)⊥. On the other hand, we have

x = S(x) + T (x)

where S(x) ∈ W⊥ and T (x) ∈ (W⊥)⊥. By the uniqueness part of Theorem 6.8, we must then
have projW⊥(x) = S(x) and z′ = T (x).

Therefore, we have shown that T (x) = projW (x) and S(x) = projW⊥(x).

(d) Show that ||x||2 = ||T (x)||2 + ||S(x)||2.

Proof. By part (c), we know that T (x) = projW (x) ∈ W and that S(x) = projW⊥(x) ∈ W⊥.
It follows that T (x) · S(x) = 0. Therefore, since x = T (x) + S(x), we see that

||x||2 = x · x = (T (x) + S(x)) · (T (x) + S(x))

= T (x) · T (x) + 2(T (x) · S(x)) + S(x) · S(x)
= ||T (x)||2 + ||S(x)||2.


