Proofs Homework Set 13

Math 217 - Winter 2011

Due April 13

Problem 13.1. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for \mathbb{R}^{n}. Recall from the previous assignment that we defined the inner product $\langle\mathbf{u}, \mathbf{v}\rangle_{\mathcal{B}}=[\mathbf{u}]_{\mathcal{B}} \cdot[\mathbf{v}]_{\mathcal{B}}$.
(a) Find a matrix M such that $\langle\mathbf{u}, \mathbf{v}\rangle_{\mathcal{B}}=\mathbf{u}^{T} M \mathbf{v}$.
(b) Show that if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is an orthonormal basis, then $\langle\mathbf{u}, \mathbf{v}\rangle_{\mathcal{B}}=\mathbf{u} \cdot \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$.
(c) Find an example to show that part (b) is not necessarily true if \mathcal{B} is not an orthonormal basis.
(d) Suppose now that $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is an orthonormal basis for \mathbb{R}^{n} and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Prove that the i, j entry of $[T]_{\mathcal{B}}$ is $\left\langle T\left(\mathbf{b}_{j}\right), \mathbf{b}_{i}\right\rangle_{\mathcal{B}}$.

Problem 13.2. Let W be a subspace of \mathbb{R}^{n}, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear transformation given by $T(\mathbf{x})=\operatorname{proj}_{W}(\mathbf{x})$.
(a) Show that for every $\mathbf{x} \in \mathbb{R}^{n},\|T(\mathbf{x})\| \leq\|\mathbf{x}\|$.
(b) Show that for every $\mathrm{x} \in \mathbb{R}^{n}, \mathrm{x} \cdot T(\mathrm{x}) \geq 0$.
(c) Define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(\mathbf{x})=\mathbf{x}-T(\mathbf{x})$. Show that this is the orthogonal projection onto W^{\perp}.
(d) Show that $\|\mathbf{x}\|^{2}=\|T(\mathbf{x})\|^{2}+\|S(\mathbf{x})\|^{2}$.

