Exercise 1.13.

This exercise is a bunch of problems about radicals of ideals. All of them are
pretty easy using either definition, r(a) = {z € A| 2™ € a for some n > 0} or
r(a) = npeV(a) p. I'll use the first one unless the second is way easier.

1. r(a) D a.

Proof: Let x € a. Then 2! = x € a, so x € 7(a).

Proof: Since r preserves inclusions (a trivial remark that I reserve the right to
use frequently), part 1. immediately gives r(r(a)) 2 r(a). For the converse, note
that if © € r(r(a)), then 2™ € r(a) for some n > 0, so 2™ = (™)™ € a for some
m >0, so z € r(a).

3. r(ab) =r(anb) =r(a)Nrb).

Proof: We show r(ab) C r(anb) C r(a)Nr(b) C r(ab), which is clearly sufficient.
The first C is trivial from applying r to ab C a N b. The second is trivial from
applying » to anNb C a and anb C b. For the third, let € r(a) N r(b). Then
2" € a and ™ € b for some n,m > 0. It follows that z"T™ = z"z™ € ab, so
x € r(ab), as desired.

Alternatively, we could apply the second definition to 1.15.4.

4. r(a) = (1) & a=(1).

Proof: Recall that an ideal equals (1) if and only if it contains 1. So the claim
is1 €a<1¢€r(a), which is obvious from 1™ =1 for all n > 0.

5. r(a+b) =r(r(a) +r(b)).
Proof: For this one I’ll use the second definition of r, which shows that we will
have equality as long as V(a4 b) = V(r(a) + r(b)). But this equality is trivial

from the following general facts, valid for all ideals I and J: firstly, V(I + J) =
V(I) NV (J); secondly, V(r(I)) = V(I). These will be verified in a later exercise.

6. If p is prime, r(p™) = p for all n > 0.

Proof: By 3. and induction we have r(p™) = r(p), but r(p) = p trivially from
the second definition.

Problem 1.6. A ring A is such that every ideal not contained in the nilradical
contains a nonzero idempotent (that is, and element e such that e? = e # 0). Prove
that the nilradical and Jacobson radical are equal.

Proof: As always, the nilradical is contained in the Jacobson radical (every
maximal ideal is prime). Suppose the Jacobson radical is not contained in the
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nilradical; then by hypothesis we have a nonzero idempotent e in the Jacobson
radical. However, 1 — e will then be a unit: otherwise, it generates a nontrivial
ideal, which will be contained in a maximal ideal; then 1 = (1 — e) 4+ e would be
contained in the self-same maximal ideal, a contradiction. But then if we multiply
the equation (1—e)e = 0 by the inverse of 1 —e, we arrive at the contradiction e = 0.

Problem 1.15.

1. If a is the ideal generated by E, then V(E) =V (a) = V(r(a)).

Proof: That V(E) 2 V(a) 2 V(r(a)) is obvious from the (trivial) fact that V'
reverses inclusions. So it suffices to see that V(r(a)) 2 V(E). So let p € V(E).
Then p is an ideal containing E, hence p O a; applying r and using 1.13.6 gives
p D r(a), as desired.

2. V(0)=X,V(1)=0.

Proof: Every ideal contains 0; no proper ideal (and hence no prime ideal) con-
tains 1.

3. If (E;)ies is a family of subsets of A, then V(UE;) = NV (E;).

Proof: A prime ideal contains UFE; if and only if it contains each E;.

4. V(anb) =V(ab) = V(a) U V(b).

Proof: Since V reverses inclusions and a,b O aNb DO ab, we clearly have
V(ab) C V(anb) C V(a)UV(b). Thus it suffices to show that V(a)UV(b) D V(ab).

We show the contrapositive. So suppose p ¢ V(a) UV (b). Then we can find a € a
and b € b with a,b ¢ p. Since p is prime, this means ab € p; but ab € ab, so

p & V(ab).

Problem 1.16. Well, I sort of did this one in section. And it’s hard to do in TeX.

Problem 1.17. Show that the Xy form a basis for the topology on X.

Proof: Certainly they are open: X; = X \ V(f). Now let U = X \ V(E) be an
arbitrary open, and p € U. Then p 2 E, so for some f € E we have f ¢ p, i.e.
p € Xy, as desired.

1. XfﬂXg :ng,

Proof: This says f € p and g & p if and only if fg & p. “If” follows from p being
an ideal, and “only if” is the definition of prime.

2. Xy =0 < f is nilpotent.
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Proof: Xy = 0 if and only if f is contained in every prime if and only if f is
contained in the nilradical, by the second definition.

3. Xy =X & fis a unit.

Proof: If f is a unit, then (f) =1, so V(f) = V((f)) = 0 and Xy = X. Con-
versely, if Xy = X, then no prime ideal contains f; but then (f) is forced to be
trivial, since otherwise it’d be contained in a maximal ideal. So 1 € (f) and f is a
unit.

4. Xy =Xy = r((f) =r(9)

Proof: T claim more generally that V(I) C V(J) if and only if »(J) C r(I) if and
only if J C r(I). This is indeed more general, since applying it both ways yields
that V(I) = V(J) if and only if (I) = r(J). To prove the claim, note that the first
condition implies the second by the second definition of 7, that the second implies
the third trivially from J C r(J), and that the third implies the first by taking V'
of both sides and using 1.15.1.

Note the similarity of this whole business with the Nullstellensatz. In fact, if
we define a function I from the set of subsets of Spec(A) to the set of ideals of A
by S — Nyesp, then you can verify that I and V' (which is a map going the other
way) behave exactly like the I and V' of the Nullstellensatz; e.g. I(V(a)) = r(a)
and V(I(S)) = S.

5. X is quasi-compact.
Proof: Follows from 6. on setting f = 1.
6. Xy is quasi-compact for all f € A.

Proof: As a lemma, let’s show that X; C U;er Xy, if and only if f € r(a),
where a is the ideal generated by the f;. Indeed, X; C U;er Xy, if and only if
V(f) 2 NierV(fi) = V(Uier{fi}) = V(a), these last equalities by 1.15.1 and
1.15.3; thus this lemma follows from the general claim in the proof of 1.17.4 above.

Given the lemma, let’s show the Xy are quasi-compact. It suffices to consider
a covering Xy C U;cr Xy, by basic opens, as always in topology (can refine an
arbitrary cover, etc.). Then the lemma shows that f € r(a); but a is just the set of
finite linear combinations of the f;, so we get

=Y aifs
ieJ
for some finite subset J C I and n > 0; this shows f € r(a’) with o’ the ideal

generated by the f; for i € J. By the lemma again we get Xy C U;e Xy, a finite
subcover.

7. An open subset of X is quasi-compact if and only if it is a finite union of sets
Xy



Proof: This is pure point-set topology given that the X ; are quasi-compact basic
opens. For “if”, a cover of a finite union of Xy dudes gives a cover of each; finitely
many finite subcovers give a subcover for the whole thing. For “only if”, write the
open subset as an (arbitrary) union of basic opens, then take a finite subcover by
hypothesis.

1.18. For z € X we write x as p, when we want to think of it as a prime ideal.
1. {z} is closed < p, is maximal.

Proof: Since {z} is closed if and only if it equals its closure, by the next exercise
it suffices to show that p is maximal if and only if there are no primes strictly
between it and A. “Only if” comes straight from the definition. For “if”, we apply
to p the fact that a nontrivial ideal is always contained in a maximal ideal.

2. {2} = V(ps).

Proof: Certainly V(p,) is closed and contains z. If V(F) is another closed set
containing z, then anything in V(p;), i.e. containing p,, also contains E (transi-
tivity of D); this shows V(p,) C V(E). So indeed V(p,) = {z}.

3. y€{z} & p. Cp,.
Proof: This is a rephrasing of 2.
4. X is To.

Proof: Let © # y in X. Either p, Z p,, in which case by 3. y ¢ {z}, so with
U = X — {z} open we have y € U and = ¢ U; or else p, Z p,, in which case by
symmetric reasoning we have an open V=X — {y} withz € V and y £ V.

1.19 Show that X is irreducible if and only if the nilradical of A is prime.

By 1.17.2, the nilradical is prime if and only if for all f,g € A, we have that
Xy =0 implies Xy = 0 or X, = (). By 1.17.1 and contrapositive, this translates to
saying that for all f,g € A, we have that X, # () and X, # 0 implies Xy N X, # 0.
This last condition is the same as irreducibility except that it’s only for basic open
sets; but this is the same thing, since any nonempty open set contains a nonempty
basic open subset.



