
Exercise 1.13.
This exercise is a bunch of problems about radicals of ideals. All of them are

pretty easy using either definition, r(a) = {x ∈ A | xn ∈ a for some n > 0} or
r(a) =

⋂
p∈V (a) p. I’ll use the first one unless the second is way easier.

1. r(a) ⊇ a.

Proof: Let x ∈ a. Then x1 = x ∈ a, so x ∈ r(a).

2. r(r(a)) = r(a).

Proof: Since r preserves inclusions (a trivial remark that I reserve the right to
use frequently), part 1. immediately gives r(r(a)) ⊇ r(a). For the converse, note
that if x ∈ r(r(a)), then xn ∈ r(a) for some n > 0, so xnm = (xn)m ∈ a for some
m > 0, so x ∈ r(a).

3. r(ab) = r(a ∩ b) = r(a) ∩ r(b).

Proof: We show r(ab) ⊆ r(a∩b) ⊆ r(a)∩r(b) ⊆ r(ab), which is clearly sufficient.
The first ⊆ is trivial from applying r to ab ⊆ a ∩ b. The second is trivial from
applying r to a ∩ b ⊆ a and a ∩ b ⊆ b. For the third, let x ∈ r(a) ∩ r(b). Then
xn ∈ a and xm ∈ b for some n, m > 0. It follows that xn+m = xnxm ∈ ab, so
x ∈ r(ab), as desired.

Alternatively, we could apply the second definition to 1.15.4.

4. r(a) = (1)⇔ a = (1).

Proof: Recall that an ideal equals (1) if and only if it contains 1. So the claim
is 1 ∈ a⇔ 1 ∈ r(a), which is obvious from 1n = 1 for all n > 0.

5. r(a + b) = r(r(a) + r(b)).

Proof: For this one I’ll use the second definition of r, which shows that we will
have equality as long as V (a + b) = V (r(a) + r(b)). But this equality is trivial
from the following general facts, valid for all ideals I and J : firstly, V (I + J) =
V (I) ∩ V (J); secondly, V (r(I)) = V (I). These will be verified in a later exercise.

6. If p is prime, r(pn) = p for all n > 0.

Proof: By 3. and induction we have r(pn) = r(p), but r(p) = p trivially from
the second definition.

Problem 1.6. A ring A is such that every ideal not contained in the nilradical
contains a nonzero idempotent (that is, and element e such that e2 = e 6= 0). Prove
that the nilradical and Jacobson radical are equal.

Proof: As always, the nilradical is contained in the Jacobson radical (every
maximal ideal is prime). Suppose the Jacobson radical is not contained in the
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nilradical; then by hypothesis we have a nonzero idempotent e in the Jacobson
radical. However, 1 − e will then be a unit: otherwise, it generates a nontrivial
ideal, which will be contained in a maximal ideal; then 1 = (1 − e) + e would be
contained in the self-same maximal ideal, a contradiction. But then if we multiply
the equation (1−e)e = 0 by the inverse of 1−e, we arrive at the contradiction e = 0.

Problem 1.15.

1. If a is the ideal generated by E, then V (E) = V (a) = V (r(a)).

Proof: That V (E) ⊇ V (a) ⊇ V (r(a)) is obvious from the (trivial) fact that V
reverses inclusions. So it suffices to see that V (r(a)) ⊇ V (E). So let p ∈ V (E).
Then p is an ideal containing E, hence p ⊇ a; applying r and using 1.13.6 gives
p ⊇ r(a), as desired.

2. V (0) = X, V (1) = ∅.

Proof: Every ideal contains 0; no proper ideal (and hence no prime ideal) con-
tains 1.

3. If (Ei)i∈I is a family of subsets of A, then V (∪Ei) = ∩V (Ei).

Proof: A prime ideal contains ∪Ei if and only if it contains each Ei.

4. V (a ∩ b) = V (ab) = V (a) ∪ V (b).

Proof: Since V reverses inclusions and a, b ⊇ a ∩ b ⊇ ab, we clearly have
V (ab) ⊆ V (a∩b) ⊆ V (a)∪V (b). Thus it suffices to show that V (a)∪V (b) ⊇ V (ab).
We show the contrapositive. So suppose p 6∈ V (a) ∪ V (b). Then we can find a ∈ a
and b ∈ b with a, b 6∈ p. Since p is prime, this means ab 6∈ p; but ab ∈ ab, so
p 6∈ V (ab).

Problem 1.16. Well, I sort of did this one in section. And it’s hard to do in TeX.

Problem 1.17. Show that the Xf form a basis for the topology on X.

Proof: Certainly they are open: Xf = X \ V (f). Now let U = X \ V (E) be an
arbitrary open, and p ∈ U . Then p 6⊇ E, so for some f ∈ E we have f 6∈ p, i.e.
p ∈ Xf , as desired.

1. Xf ∩Xg = Xfg.

Proof: This says f 6∈ p and g 6∈ p if and only if fg 6∈ p. “If” follows from p being
an ideal, and “only if” is the definition of prime.

2. Xf = ∅ ⇔ f is nilpotent.
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Proof: Xf = ∅ if and only if f is contained in every prime if and only if f is
contained in the nilradical, by the second definition.

3. Xf = X ⇔ f is a unit.

Proof: If f is a unit, then (f) = 1, so V (f) = V ((f)) = ∅ and Xf = X. Con-
versely, if Xf = X, then no prime ideal contains f ; but then (f) is forced to be
trivial, since otherwise it’d be contained in a maximal ideal. So 1 ∈ (f) and f is a
unit.

4. Xf = Xg ⇔ r((f)) = r((g)).

Proof: I claim more generally that V (I) ⊆ V (J) if and only if r(J) ⊆ r(I) if and
only if J ⊆ r(I). This is indeed more general, since applying it both ways yields
that V (I) = V (J) if and only if r(I) = r(J). To prove the claim, note that the first
condition implies the second by the second definition of r, that the second implies
the third trivially from J ⊆ r(J), and that the third implies the first by taking V
of both sides and using 1.15.1.

Note the similarity of this whole business with the Nullstellensatz. In fact, if
we define a function I from the set of subsets of Spec(A) to the set of ideals of A
by S 7→ ∩p∈Sp, then you can verify that I and V (which is a map going the other
way) behave exactly like the I and V of the Nullstellensatz; e.g. I(V (a)) = r(a)
and V (I(S)) = S.

5. X is quasi-compact.

Proof: Follows from 6. on setting f = 1.

6. Xf is quasi-compact for all f ∈ A.

Proof: As a lemma, let’s show that Xf ⊆ ∪i∈IXfi if and only if f ∈ r(a),
where a is the ideal generated by the fi. Indeed, Xf ⊆ ∪i∈IXfi if and only if
V (f) ⊇ ∩i∈IV (fi) = V (∪i∈I{fi}) = V (a), these last equalities by 1.15.1 and
1.15.3; thus this lemma follows from the general claim in the proof of 1.17.4 above.

Given the lemma, let’s show the Xf are quasi-compact. It suffices to consider
a covering Xf ⊆ ∪i∈IXfi by basic opens, as always in topology (can refine an
arbitrary cover, etc.). Then the lemma shows that f ∈ r(a); but a is just the set of
finite linear combinations of the fi, so we get

fn =
∑
i∈J

aifi

for some finite subset J ⊆ I and n > 0; this shows f ∈ r(a′) with a′ the ideal
generated by the fi for i ∈ J . By the lemma again we get Xf ⊆ ∪i∈JXfj

, a finite
subcover.

7. An open subset of X is quasi-compact if and only if it is a finite union of sets
Xf .
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Proof: This is pure point-set topology given that the Xf are quasi-compact basic
opens. For “if”, a cover of a finite union of Xf dudes gives a cover of each; finitely
many finite subcovers give a subcover for the whole thing. For “only if”, write the
open subset as an (arbitrary) union of basic opens, then take a finite subcover by
hypothesis.

1.18. For x ∈ X we write x as px when we want to think of it as a prime ideal.

1. {x} is closed ⇔ px is maximal.

Proof: Since {x} is closed if and only if it equals its closure, by the next exercise
it suffices to show that p is maximal if and only if there are no primes strictly
between it and A. “Only if” comes straight from the definition. For “if”, we apply
to p the fact that a nontrivial ideal is always contained in a maximal ideal.

2. {x} = V (px).

Proof: Certainly V (px) is closed and contains x. If V (E) is another closed set
containing x, then anything in V (px), i.e. containing px, also contains E (transi-
tivity of ⊇); this shows V (px) ⊆ V (E). So indeed V (px) = {x}.

3. y ∈ {x} ⇔ px ⊆ py.

Proof: This is a rephrasing of 2.

4. X is T0.

Proof: Let x 6= y in X. Either px 6⊆ py, in which case by 3. y 6∈ {x}, so with
U = X − {x} open we have y ∈ U and x 6∈ U ; or else px 6⊆ py, in which case by
symmetric reasoning we have an open V = X − {y} with x ∈ V and y 6∈ V .

1.19 Show that X is irreducible if and only if the nilradical of A is prime.

By 1.17.2, the nilradical is prime if and only if for all f, g ∈ A, we have that
Xfg = ∅ implies Xf = ∅ or Xg = ∅. By 1.17.1 and contrapositive, this translates to
saying that for all f, g ∈ A, we have that Xf 6= ∅ and Xg 6= ∅ implies Xf ∩Xg 6= ∅.
This last condition is the same as irreducibility except that it’s only for basic open
sets; but this is the same thing, since any nonempty open set contains a nonempty
basic open subset.


