1. Prove that a UFD is normal.

Proof: Let A be a UFD, K its field of fractions. Given z € K, we can write
x =a/bwitha € Aand b€ A\ {0}, and the factorizations of a and b not having
any prime in common (by canceling any common primes). Then if  is integral over
A, we have

"+ ep 12" P+ e te=0
for some n and ¢; € A. Clearing denominators gives
a4 cp_1a" b4 .. 4 crab™ Tt 4 cpb™ =0,

which shows that b divides a™. But then any prime in b’s factorization would also
be in a™’s, and hence in a’s; we avoid a contradiction only if b’s factorization has
no primes, i.e. b is a unit, which means x € A.

2. What is the normalization of A = k[x,y]/(y?> — 23)? Here k is a field.

Answer: First we give an injection of A into k[t]: define ¢ : A — k[t] by = +— t2,
y +— t3 (which is well-defined since (t3)? — (t2)® = 0). We will show injectivity by
exhibiting a collection of elements of A which span A and whose images under ¢ are
linearly independent (as a bonus, this will simultaneously show that our collection
is in fact a basis). The desired collection consists of the

fiyjforiEOandjzoorl.

These span A: indeed, certainly the Z'7’ for i,j > 0 span, and we can reduce the
j below 2 by successively applying the relation 72 = Z°. And their images, namely
1 together with the ¢t for n > 2, are indeed linearly independent.

So A is isomorphic to its image A" = ¢(A) (which, explicitly, is the span of 1 and
the ™ for n > 2). Let’s think about the normalization of A’. The field of fractions
of A’ is k(t), the same as that of k[t], since t = t3/t%. And k[t] is integral over A’,
since t? — t? = 0. And k[t] is a UFD, hence integrally closed by the first problem.
Thus k[t] is the normalization of A’; that is, the normalization of A’ is obtained by
adjoining the element t3/t? to A’ inside its field of fractions. Translating via the
above isomorphism, we see that the normalization of A is obtained by adjoining
7/ inside the field of fractions, and that the result is just a polynomial ring in 3/Z.

3. Let I be an ideal in a ring A. Is Ann(I/I?) = Ann(I) + I?

Answer: No. Many of of you gave the following good example: let A =
[1;2,Z/2Z, and I be the ideal ©°,Z/2Z. Then I = I? so Ann(I/I?) = A;
but Ann(I) =0, so Ann(I) +1 =1 # A.

In this example, I is not finitely generated. Even if I is finitely generated, we
don’t necessarily have equality; Tiankai and Nike gave the following example: let
A= k[z,y,2]/(y*> —xz,2% —yz) and I = (z,y). Then z € Ann(I/I?), but the claim
is that z & Ann(I) 4 I. This claim is not easy to check, because it can be tricky to
get a handle on modding out by y? — zz and 2% — yz. There is a technique one can
use, that of Groebner bases, which I won’t explain here, but maybe will in section
some day.



The reason the finitely generated case is different is that for I finitely generated,
one necessarily has that the radicals of Ann(//I?) and of Ann(I)+ I coincide. You
might not understand this argument yet, but you soon will:

Indeed, It suffices to see that V(Ann(I/I?)) = V(Ann(I) + I) = V(Ann(I)) N
V(I). Since I = Ann(A/I) and I/I? is isomorphic to I ®4 A/I (see the next
problem), this will follow from the following more general claim: let M and N
be finitely generated modules over A. Then V(Ann(M ®4 N)) = V(Aun(M)) N
V(Ann(N)).

For this I first claim that p & V/(Ann(M)) if and only if M, = 0. For “if”, note
that the condition implies that, m1, ..., m, being generators, there are a1,...,a, €
A\ p with a;m; = 0. Then the product of the a; will be in Ann(M) but not p.
“Only if” is easier, and I leave it to you.

Thus what we need to prove is that (M ®4 N), = 0 if and only if either M, =0
or N, = 0. But (and here by = I mean canonical isomorphisms of A,-modules) we
have

(M ®4 N)p =(M®sN)®a Ay = (M ®4 Ap) ®a, (N ®a Ap) =M, ®a, Ny,

so the claim follows from 2.3 below (certainly if M is finitely generated over A,
so is M, over A,). Here the second = follows from a general claim made in the
proof of that exercise, and the other =’s are instances of the same general fact
M, = M ®4 Ay, which I invite you to check.

2.2 Let A be a ring, I an ideal, and M an A-module. Show that (4/I)®4 M is
isomorphic to M/IM.

Proof: Consider the short exact sequence
0—-I—-A—A/I—0.
Tensoring with M is right exact, so we get an exact sequence
IOoM—AM — (A/I)@ M — 0.

This shows that (A/I) ® M is isomorphic to A ® M modulo the image of I @ M —
A® M. However, I claim that A® M is isomorphic to M via a ® m +— am. Indeed,
this is certainly bilinear, so gives a good map from the tensor product A ® M,
and m — 1 ® m is an obvious inverse. So (A/I) ® M is isomorphic to M mod-
ulo the image of IQ® M — A®@ M — M, which is I M if you just remember the maps.

2.3 Let A be a local ring, M and N finitely generated A-modules. Prove that if
M®a N=0,then M =0or N =0.

Proof: First I claim that if A is an arbitrary ring and B an A-algebra, and M
and N are arbitrary A-modules, we have a canonical isomorphism of B-modules
(MRaN)@aB=(M®asB)®p(N®4B). As alemma, I claim that M ® 4 B has
the following universal property: for any B-module P, the sets Homp(M ® 4 B, P)
and Hom 4 (M, P) are in canonical one-to-one correspondence (we can consider P
as an A-module through the map A — B: have a € A act through its image).
Indeed, to f : M ® 4 B — P we can associate an M — P by m — f(m® 1), and to
g: M — P we can associate M ® 4 B — P by m ® b — bg(m), and these are easily
seen to be inverse. Then the following chain of canonical bijections shows that the



two modules we want to be isomorphic satisfy the same universal property:

Homp(M ®4 N)®4 B,P) = Homa(M®y4N,P)
Homa(M, Homu(N, P))
Homa(M,Homp(N ®4 B, P))
(
(

Homp(M ®4 B,HOTTLB(NQ@A B,P))
= Homp((M ®4 B)®p (N ®4 B),P).

(To get the explicit isomorphism and its inverse from this argument, one should
take P = (M ®4 N) ®4 B in the above and trace id(yg ,n)@, 5 through; then do
the reverse with P = (M ®4 B) ®p (M ®4 B) and id(yg ,Byo s (Me4B))-

Now we apply this in our situation with B = A/m. We see that M ® 4 N =0
implies, on tensoring with B, that M/mM ® 4/ N/mN = 0 (we have also used the
previous exercise). But M/mM and N/mN are vector spaces over the field A/m, so
this means that one must be zero (count dimensions if you like; dim takes tensor to
product). Then Nakayama’s lemma implies that one of M and N is zero, as desired.

5.8. Let A be a subring of a ring B, and let C' be the integral closure of A in B.
Let f, g be monic polynomials in B[z] such that fg € C[z]. Prove that f,g € C[z].

Proof: First some building lemmas.

Lemma: Let R be aring, f € R[x], and a € R such that f(a) = 0. Then there is
a g € Rlz] with f(z) = g(x)(z — a). If f # 0 then the degree of f is one less than
that of g (this is obvious).

Proof: Expand out f(z) = f(x —a+ a) as a polynomial in  — a (e.g. using
binomial theorem); the constant term is f(a) = 0.

Lemma: Let R be aring, f € R[z] monic. Then there is a ring S and an injection
R — S such that f has a root in S.

Proof: Take S = R[z]/(f). Clearly f has the root T in S, and R — S is injective
since everything nonzero in (f) has degree > deg(f) > 0 (here we use monicity).

Lemma: Let R be aring, f € R[z] monic. Then there is a ring S and an injection
R — S such that f splits into linear factors in S.

Proof: Use the previous two lemmas and induction.

Now for the proof proper. Apply the last lemma to get a ring S containing B in
which both f and g split completely (it’s not enough to get fg to split completely;
consider f = g = 22+2in Z/4Z[z]), say as f(z) = [[(x— ;) and g(z) = [[(z—5;).
Then each «; and 3; is a root of fg, which is monic with coefficients in C; thus
each is integral over C'. Hence so is every polynomial in the o; and 3;, in particular
the coefficients of f and g. But these also lie in B, in which C'is integrally closed;
hence f, g € C[x] as desired.

5.9. Let A be a subring of a ring B, and C' the integral closure of A in B. Show
that C[z] is the integral closure of A[x] in Blz].

Proof: Firstly, C[z] is integral over A[z], since obviously both C' and x are. For
the converse, suppose f € B[z] with

g f" .+ f+g=0
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for some g; € Alz]. Take r larger than the degree of everything in sight, and let
f' = f—2a". Then replacing f by f'+2z" in the above and expanding as a polynomial
in f’ gives something like

F™ b 7 4 haf A ho = 0,
with hg = 2™ + gn_1h" ™D 4+ ... 4+ g1h" + go € A[z]. We deduce from the above
inset equation that

(—f") - (something in Blx]) = ho;

by our choice of r, both —f” and hg are monic; hence so is (something); the previous
exercise lets us conclude that f’ € Clx]; hence f = f' + 2" is too.



