
1. Prove that a UFD is normal.

Proof: Let A be a UFD, K its field of fractions. Given x ∈ K, we can write
x = a/b with a ∈ A and b ∈ A \ {0}, and the factorizations of a and b not having
any prime in common (by canceling any common primes). Then if x is integral over
A, we have

xn + cn−1x
n−1 + . . .+ c1x+ c0 = 0

for some n and ci ∈ A. Clearing denominators gives

an + cn−1a
n−1b+ . . .+ c1ab

n−1 + c0b
m = 0,

which shows that b divides an. But then any prime in b’s factorization would also
be in an’s, and hence in a’s; we avoid a contradiction only if b’s factorization has
no primes, i.e. b is a unit, which means x ∈ A.

2. What is the normalization of A = k[x, y]/(y2 − x3)? Here k is a field.

Answer: First we give an injection of A into k[t]: define ϕ : A→ k[t] by x 7→ t2,
y 7→ t3 (which is well-defined since (t3)2 − (t2)3 = 0). We will show injectivity by
exhibiting a collection of elements of A which span A and whose images under ϕ are
linearly independent (as a bonus, this will simultaneously show that our collection
is in fact a basis). The desired collection consists of the

xiyj for i ≥ 0 and j = 0 or 1.

These span A: indeed, certainly the xiyj for i, j ≥ 0 span, and we can reduce the
j below 2 by successively applying the relation y2 = x3. And their images, namely
1 together with the tn for n ≥ 2, are indeed linearly independent.

So A is isomorphic to its image A′ = ϕ(A) (which, explicitly, is the span of 1 and
the xn for n ≥ 2). Let’s think about the normalization of A′. The field of fractions
of A′ is k(t), the same as that of k[t], since t = t3/t2. And k[t] is integral over A′,
since t2 − t2 = 0. And k[t] is a UFD, hence integrally closed by the first problem.
Thus k[t] is the normalization of A′; that is, the normalization of A′ is obtained by
adjoining the element t3/t2 to A′ inside its field of fractions. Translating via the
above isomorphism, we see that the normalization of A is obtained by adjoining
y/x inside the field of fractions, and that the result is just a polynomial ring in y/x.

3. Let I be an ideal in a ring A. Is Ann(I/I2) = Ann(I) + I?

Answer: No. Many of of you gave the following good example: let A =∏∞
i=1 Z/2Z, and I be the ideal ⊕∞i=1Z/2Z. Then I = I2, so Ann(I/I2) = A;

but Ann(I) = 0, so Ann(I) + I = I 6= A.
In this example, I is not finitely generated. Even if I is finitely generated, we

don’t necessarily have equality; Tiankai and Nike gave the following example: let
A = k[x, y, z]/(y2−xz, x2−yz) and I = (x, y). Then z ∈ Ann(I/I2), but the claim
is that z 6∈ Ann(I) + I. This claim is not easy to check, because it can be tricky to
get a handle on modding out by y2− xz and x2− yz. There is a technique one can
use, that of Groebner bases, which I won’t explain here, but maybe will in section
some day.
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The reason the finitely generated case is different is that for I finitely generated,
one necessarily has that the radicals of Ann(I/I2) and of Ann(I) + I coincide. You
might not understand this argument yet, but you soon will:

Indeed, It suffices to see that V (Ann(I/I2)) = V (Ann(I) + I) = V (Ann(I)) ∩
V (I). Since I = Ann(A/I) and I/I2 is isomorphic to I ⊗A A/I (see the next
problem), this will follow from the following more general claim: let M and N
be finitely generated modules over A. Then V (Ann(M ⊗A N)) = V (Ann(M)) ∩
V (Ann(N)).

For this I first claim that p 6∈ V (Ann(M)) if and only if Mp = 0. For “if”, note
that the condition implies that, m1, . . . ,mn being generators, there are a1, . . . , an ∈
A \ p with aimi = 0. Then the product of the ai will be in Ann(M) but not p.
“Only if” is easier, and I leave it to you.

Thus what we need to prove is that (M ⊗AN)p = 0 if and only if either Mp = 0
or Np = 0. But (and here by = I mean canonical isomorphisms of Ap-modules) we
have

(M ⊗A N)p = (M ⊗A N)⊗A Ap = (M ⊗A Ap)⊗Ap (N ⊗A Ap) = Mp ⊗Ap Np,

so the claim follows from 2.3 below (certainly if M is finitely generated over A,
so is Mp over Ap). Here the second = follows from a general claim made in the
proof of that exercise, and the other =’s are instances of the same general fact
Mp = M ⊗A Ap, which I invite you to check.

2.2 Let A be a ring, I an ideal, and M an A-module. Show that (A/I)⊗A M is
isomorphic to M/IM .

Proof: Consider the short exact sequence

0→ I → A→ A/I → 0.

Tensoring with M is right exact, so we get an exact sequence

I ⊗M → A⊗M → (A/I)⊗M → 0.

This shows that (A/I)⊗M is isomorphic to A⊗M modulo the image of I ⊗M →
A⊗M . However, I claim that A⊗M is isomorphic to M via a⊗m 7→ am. Indeed,
this is certainly bilinear, so gives a good map from the tensor product A ⊗ M ;
and m 7→ 1 ⊗ m is an obvious inverse. So (A/I) ⊗M is isomorphic to M mod-
ulo the image of I⊗M → A⊗M →M , which is IM if you just remember the maps.

2.3 Let A be a local ring, M and N finitely generated A-modules. Prove that if
M ⊗A N = 0, then M = 0 or N = 0.

Proof: First I claim that if A is an arbitrary ring and B an A-algebra, and M
and N are arbitrary A-modules, we have a canonical isomorphism of B-modules
(M ⊗AN)⊗AB = (M ⊗AB)⊗B (N ⊗AB). As a lemma, I claim that M ⊗AB has
the following universal property: for any B-module P , the sets HomB(M ⊗AB,P )
and HomA(M,P ) are in canonical one-to-one correspondence (we can consider P
as an A-module through the map A → B: have a ∈ A act through its image).
Indeed, to f : M ⊗AB → P we can associate an M → P by m 7→ f(m⊗ 1), and to
g : M → P we can associate M ⊗A B → P by m⊗ b 7→ bg(m), and these are easily
seen to be inverse. Then the following chain of canonical bijections shows that the
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two modules we want to be isomorphic satisfy the same universal property:

HomB((M ⊗A N)⊗A B,P ) = HomA(M ⊗A N,P )
= HomA(M,HomA(N,P ))
= HomA(M,HomB(N ⊗A B,P ))
= HomB(M ⊗A B,HomB(N ⊗A B,P ))
= HomB((M ⊗A B)⊗B (N ⊗A B), P ).

(To get the explicit isomorphism and its inverse from this argument, one should
take P = (M ⊗A N)⊗A B in the above and trace id(M⊗AN)⊗AB through; then do
the reverse with P = (M ⊗A B)⊗B (M ⊗A B) and id(M⊗AB)⊗B(M⊗AB)).

Now we apply this in our situation with B = A/m. We see that M ⊗A N = 0
implies, on tensoring with B, that M/mM ⊗A/mN/mN = 0 (we have also used the
previous exercise). But M/mM and N/mN are vector spaces over the field A/m, so
this means that one must be zero (count dimensions if you like; dim takes tensor to
product). Then Nakayama’s lemma implies that one of M and N is zero, as desired.

5.8. Let A be a subring of a ring B, and let C be the integral closure of A in B.
Let f, g be monic polynomials in B[x] such that fg ∈ C[x]. Prove that f, g ∈ C[x].

Proof: First some building lemmas.
Lemma: Let R be a ring, f ∈ R[x], and a ∈ R such that f(a) = 0. Then there is

a g ∈ R[x] with f(x) = g(x)(x− a). If f 6= 0 then the degree of f is one less than
that of g (this is obvious).

Proof: Expand out f(x) = f(x − a + a) as a polynomial in x − a (e.g. using
binomial theorem); the constant term is f(a) = 0.

Lemma: Let R be a ring, f ∈ R[x] monic. Then there is a ring S and an injection
R→ S such that f has a root in S.

Proof: Take S = R[x]/(f). Clearly f has the root x in S, and R→ S is injective
since everything nonzero in (f) has degree ≥ deg(f) > 0 (here we use monicity).

Lemma: Let R be a ring, f ∈ R[x] monic. Then there is a ring S and an injection
R→ S such that f splits into linear factors in S.

Proof: Use the previous two lemmas and induction.
Now for the proof proper. Apply the last lemma to get a ring S containing B in

which both f and g split completely (it’s not enough to get fg to split completely;
consider f = g = x2+2 in Z/4Z[x]), say as f(x) =

∏
(x−αi) and g(x) =

∏
(x−βj).

Then each αi and βj is a root of fg, which is monic with coefficients in C; thus
each is integral over C. Hence so is every polynomial in the αi and βj , in particular
the coefficients of f and g. But these also lie in B, in which C is integrally closed;
hence f, g ∈ C[x] as desired.

5.9. Let A be a subring of a ring B, and C the integral closure of A in B. Show
that C[x] is the integral closure of A[x] in B[x].

Proof: Firstly, C[x] is integral over A[x], since obviously both C and x are. For
the converse, suppose f ∈ B[x] with

fn + gn−1f
n−1 + . . .+ g1f + g0 = 0
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for some gi ∈ A[x]. Take r larger than the degree of everything in sight, and let
f ′ = f−xr. Then replacing f by f ′+xr in the above and expanding as a polynomial
in f ′ gives something like

f ′n + hn−1f
′n−1 + . . .+ h1f

′ + h0 = 0,

with h0 = xrn + gn−1h
r(n−1) + . . .+ g1h

r + g0 ∈ A[x]. We deduce from the above
inset equation that

(−f ′) · (something in B[x]) = h0;
by our choice of r, both −f ′ and h0 are monic; hence so is (something); the previous
exercise lets us conclude that f ′ ∈ C[x]; hence f = f ′ + xr is too.


