1. Prove that a UFD is normal.

Proof: Let A be a UFD, K its field of fractions. Given $x \in K$, we can write $x=a / b$ with $a \in A$ and $b \in A \backslash\{0\}$, and the factorizations of a and b not having any prime in common (by canceling any common primes). Then if x is integral over A, we have

$$
x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0}=0
$$

for some n and $c_{i} \in A$. Clearing denominators gives

$$
a^{n}+c_{n-1} a^{n-1} b+\ldots+c_{1} a b^{n-1}+c_{0} b^{m}=0
$$

which shows that b divides a^{n}. But then any prime in b 's factorization would also be in a^{n} 's, and hence in a 's; we avoid a contradiction only if b 's factorization has no primes, i.e. b is a unit, which means $x \in A$.
2. What is the normalization of $A=k[x, y] /\left(y^{2}-x^{3}\right)$? Here k is a field.

Answer: First we give an injection of A into $k[t]$: define $\varphi: A \rightarrow k[t]$ by $x \mapsto t^{2}$, $y \mapsto t^{3}$ (which is well-defined since $\left(t^{3}\right)^{2}-\left(t^{2}\right)^{3}=0$). We will show injectivity by exhibiting a collection of elements of A which span A and whose images under φ are linearly independent (as a bonus, this will simultaneously show that our collection is in fact a basis). The desired collection consists of the

$$
\bar{x}^{i} \bar{y}^{j} \text { for } i \geq 0 \text { and } j=0 \text { or } 1
$$

These span A : indeed, certainly the $\bar{x}^{i} \bar{y}^{j}$ for $i, j \geq 0$ span, and we can reduce the j below 2 by successively applying the relation $\bar{y}^{2}=\bar{x}^{3}$. And their images, namely 1 together with the t^{n} for $n \geq 2$, are indeed linearly independent.

So A is isomorphic to its image $A^{\prime}=\varphi(A)$ (which, explicitly, is the span of 1 and the x^{n} for $n \geq 2$). Let's think about the normalization of A^{\prime}. The field of fractions of A^{\prime} is $k(t)$, the same as that of $k[t]$, since $t=t^{3} / t^{2}$. And $k[t]$ is integral over A^{\prime}, since $t^{2}-t^{2}=0$. And $k[t]$ is a UFD, hence integrally closed by the first problem. Thus $k[t]$ is the normalization of A^{\prime}; that is, the normalization of A^{\prime} is obtained by adjoining the element t^{3} / t^{2} to A^{\prime} inside its field of fractions. Translating via the above isomorphism, we see that the normalization of A is obtained by adjoining \bar{y} / \bar{x} inside the field of fractions, and that the result is just a polynomial ring in \bar{y} / \bar{x}.
3. Let I be an ideal in a ring A. Is $\operatorname{Ann}\left(I / I^{2}\right)=\operatorname{Ann}(I)+I$?

Answer: No. Many of of you gave the following good example: let $A=$ $\prod_{i=1}^{\infty} \mathbf{Z} / 2 \mathbf{Z}$, and I be the ideal $\oplus_{i=1}^{\infty} \mathbf{Z} / 2 \mathbf{Z}$. Then $I=I^{2}$, so $\operatorname{Ann}\left(I / I^{2}\right)=A ;$ but $\operatorname{Ann}(I)=0$, so $\operatorname{Ann}(I)+I=I \neq A$.

In this example, I is not finitely generated. Even if I is finitely generated, we don't necessarily have equality; Tiankai and Nike gave the following example: let $A=k[x, y, z] /\left(y^{2}-x z, x^{2}-y z\right)$ and $I=(x, y)$. Then $z \in \operatorname{Ann}\left(I / I^{2}\right)$, but the claim is that $z \notin \operatorname{Ann}(I)+I$. This claim is not easy to check, because it can be tricky to get a handle on modding out by $y^{2}-x z$ and $x^{2}-y z$. There is a technique one can use, that of Groebner bases, which I won't explain here, but maybe will in section some day.

The reason the finitely generated case is different is that for I finitely generated, one necessarily has that the radicals of $\operatorname{Ann}\left(I / I^{2}\right)$ and of $\operatorname{Ann}(I)+I$ coincide. You might not understand this argument yet, but you soon will:

Indeed, It suffices to see that $V\left(\operatorname{Ann}\left(I / I^{2}\right)\right)=V(\operatorname{Ann}(I)+I)=V(\operatorname{Ann}(I)) \cap$ $V(I)$. Since $I=\operatorname{Ann}(A / I)$ and I / I^{2} is isomorphic to $I \otimes_{A} A / I$ (see the next problem), this will follow from the following more general claim: let M and N be finitely generated modules over A. Then $V\left(\operatorname{Ann}\left(M \otimes_{A} N\right)\right)=V(\operatorname{Ann}(M)) \cap$ $V(\operatorname{Ann}(N))$.

For this I first claim that $\mathfrak{p} \notin V(\operatorname{Ann}(M))$ if and only if $M_{\mathfrak{p}}=0$. For "if", note that the condition implies that, m_{1}, \ldots, m_{n} being generators, there are $a_{1}, \ldots, a_{n} \in$ $A \backslash \mathfrak{p}$ with $a_{i} m_{i}=0$. Then the product of the a_{i} will be in $\operatorname{Ann}(M)$ but not \mathfrak{p}. "Only if" is easier, and I leave it to you.

Thus what we need to prove is that $\left(M \otimes_{A} N\right)_{\mathfrak{p}}=0$ if and only if either $M_{\mathfrak{p}}=0$ or $N_{\mathfrak{p}}=0$. But (and here by $=$ I mean canonical isomorphisms of $A_{\mathfrak{p}}$-modules) we have

$$
\left(M \otimes_{A} N\right)_{\mathfrak{p}}=\left(M \otimes_{A} N\right) \otimes_{A} A_{\mathfrak{p}}=\left(M \otimes_{A} A_{\mathfrak{p}}\right) \otimes_{A_{\mathfrak{p}}}\left(N \otimes_{A} A_{\mathfrak{p}}\right)=M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}}
$$

so the claim follows from 2.3 below (certainly if M is finitely generated over A, so is $M_{\mathfrak{p}}$ over $A_{\mathfrak{p}}$). Here the second $=$ follows from a general claim made in the proof of that exercise, and the other $=$'s are instances of the same general fact $M_{\mathfrak{p}}=M \otimes_{A} A_{\mathfrak{p}}$, which I invite you to check.
2.2 Let A be a ring, I an ideal, and M an A-module. Show that $(A / I) \otimes_{A} M$ is isomorphic to $M / I M$.

Proof: Consider the short exact sequence

$$
0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0
$$

Tensoring with M is right exact, so we get an exact sequence

$$
I \otimes M \rightarrow A \otimes M \rightarrow(A / I) \otimes M \rightarrow 0
$$

This shows that $(A / I) \otimes M$ is isomorphic to $A \otimes M$ modulo the image of $I \otimes M \rightarrow$ $A \otimes M$. However, I claim that $A \otimes M$ is isomorphic to M via $a \otimes m \mapsto a m$. Indeed, this is certainly bilinear, so gives a good map from the tensor product $A \otimes M$; and $m \mapsto 1 \otimes m$ is an obvious inverse. So $(A / I) \otimes M$ is isomorphic to M modulo the image of $I \otimes M \rightarrow A \otimes M \rightarrow M$, which is $I M$ if you just remember the maps.
2.3 Let A be a local ring, M and N finitely generated A-modules. Prove that if $M \otimes_{A} N=0$, then $M=0$ or $N=0$.

Proof: First I claim that if A is an arbitrary ring and B an A-algebra, and M and N are arbitrary A-modules, we have a canonical isomorphism of B-modules $\left(M \otimes_{A} N\right) \otimes_{A} B=\left(M \otimes_{A} B\right) \otimes_{B}\left(N \otimes_{A} B\right)$. As a lemma, I claim that $M \otimes_{A} B$ has the following universal property: for any B-module P, the sets $\operatorname{Hom}_{B}\left(M \otimes_{A} B, P\right)$ and $\operatorname{Hom}_{A}(M, P)$ are in canonical one-to-one correspondence (we can consider P as an A-module through the map $A \rightarrow B$: have $a \in A$ act through its image). Indeed, to $f: M \otimes_{A} B \rightarrow P$ we can associate an $M \rightarrow P$ by $m \mapsto f(m \otimes 1)$, and to $g: M \rightarrow P$ we can associate $M \otimes_{A} B \rightarrow P$ by $m \otimes b \mapsto b g(m)$, and these are easily seen to be inverse. Then the following chain of canonical bijections shows that the
two modules we want to be isomorphic satisfy the same universal property:

$$
\begin{aligned}
\operatorname{Hom}_{B}\left(\left(M \otimes_{A} N\right) \otimes_{A} B, P\right) & =\operatorname{Hom}_{A}\left(M \otimes_{A} N, P\right) \\
& =\operatorname{Hom}_{A}\left(M, \operatorname{Hom}_{A}(N, P)\right) \\
& =\operatorname{Hom}_{A}\left(M, \operatorname{Hom}_{B}\left(N \otimes_{A} B, P\right)\right) \\
& =\operatorname{Hom}_{B}\left(M \otimes_{A} B, \operatorname{Hom}_{B}\left(N \otimes_{A} B, P\right)\right) \\
& =\operatorname{Hom}_{B}\left(\left(M \otimes_{A} B\right) \otimes_{B}\left(N \otimes_{A} B\right), P\right)
\end{aligned}
$$

(To get the explicit isomorphism and its inverse from this argument, one should take $P=\left(M \otimes_{A} N\right) \otimes_{A} B$ in the above and trace $i d_{\left(M \otimes_{A} N\right) \otimes_{A} B}$ through; then do the reverse with $P=\left(M \otimes_{A} B\right) \otimes_{B}\left(M \otimes_{A} B\right)$ and $\left.i d_{\left(M \otimes_{A} B\right) \otimes_{B}\left(M \otimes_{A} B\right)}\right)$.

Now we apply this in our situation with $B=A / \mathfrak{m}$. We see that $M \otimes_{A} N=0$ implies, on tensoring with B, that $M / \mathfrak{m} M \otimes_{A / \mathfrak{m}} N / \mathfrak{m} N=0$ (we have also used the previous exercise). But $M / \mathfrak{m} M$ and $N / \mathfrak{m} N$ are vector spaces over the field A / \mathfrak{m}, so this means that one must be zero (count dimensions if you like; dim takes tensor to product). Then Nakayama's lemma implies that one of M and N is zero, as desired.
5.8. Let A be a subring of a ring B, and let C be the integral closure of A in B. Let f, g be monic polynomials in $B[x]$ such that $f g \in C[x]$. Prove that $f, g \in C[x]$.

Proof: First some building lemmas.
Lemma: Let R be a ring, $f \in R[x]$, and $a \in R$ such that $f(a)=0$. Then there is a $g \in R[x]$ with $f(x)=g(x)(x-a)$. If $f \neq 0$ then the degree of f is one less than that of g (this is obvious).

Proof: Expand out $f(x)=f(x-a+a)$ as a polynomial in $x-a$ (e.g. using binomial theorem); the constant term is $f(a)=0$.

Lemma: Let R be a ring, $f \in R[x]$ monic. Then there is a ring S and an injection $R \rightarrow S$ such that f has a root in S.

Proof: Take $S=R[x] /(f)$. Clearly f has the root \bar{x} in S, and $R \rightarrow S$ is injective since everything nonzero in (f) has degree $\geq \operatorname{deg}(f)>0$ (here we use monicity).

Lemma: Let R be a ring, $f \in R[x]$ monic. Then there is a ring S and an injection $R \rightarrow S$ such that f splits into linear factors in S.

Proof: Use the previous two lemmas and induction.
Now for the proof proper. Apply the last lemma to get a ring S containing B in which both f and g split completely (it's not enough to get $f g$ to split completely; consider $f=g=x^{2}+2$ in $\left.\mathbf{Z} / 4 \mathbf{Z}[x]\right)$, say as $f(x)=\prod\left(x-\alpha_{i}\right)$ and $g(x)=\prod\left(x-\beta_{j}\right)$. Then each α_{i} and β_{j} is a root of $f g$, which is monic with coefficients in C; thus each is integral over C. Hence so is every polynomial in the α_{i} and β_{j}, in particular the coefficients of f and g. But these also lie in B, in which C is integrally closed; hence $f, g \in C[x]$ as desired.
5.9. Let A be a subring of a ring B, and C the integral closure of A in B. Show that $C[x]$ is the integral closure of $A[x]$ in $B[x]$.

Proof: Firstly, $C[x]$ is integral over $A[x]$, since obviously both C and x are. For the converse, suppose $f \in B[x]$ with

$$
f^{n}+g_{n-1} f^{n-1}+\ldots+g_{1} f+g_{0}=0
$$

for some $g_{i} \in A[x]$. Take r larger than the degree of everything in sight, and let $f^{\prime}=f-x^{r}$. Then replacing f by $f^{\prime}+x^{r}$ in the above and expanding as a polynomial in f^{\prime} gives something like

$$
f^{\prime n}+h_{n-1} f^{\prime n-1}+\ldots+h_{1} f^{\prime}+h_{0}=0
$$

with $h_{0}=x^{r n}+g_{n-1} h^{r(n-1)}+\ldots+g_{1} h^{r}+g_{0} \in A[x]$. We deduce from the above inset equation that

$$
\left(-f^{\prime}\right) \cdot(\text { something in } B[x])=h_{0}
$$

by our choice of r, both $-f^{\prime}$ and h_{0} are monic; hence so is (something); the previous exercise lets us conclude that $f^{\prime} \in C[x]$; hence $f=f^{\prime}+x^{r}$ is too.

