
Reid 5.2. Describe the irreducible components of V (J) for J = (y2 − x4, x2 −
2x3 − x2y + 2xy + y2 − y) in k[x, y, z]. Here k is algebraically closed.

Answer: Note that the first generator factors as (y−x2)(y+x2), while the second
factors as (y − x2)(−1− 2x+ y). Thus J = (y − x2)(y + x2,−1− 2x+ y), so

V (J) = V (y − x2) ∪ V (y + x2,−1− 2x+ y).

I claim that each of V (y− x2), V (y+ x2,−1− 2x+ y) is irreducible. We check the
first by verifying that (y − x2) ⊆ k[x, y, z] is prime. Indeed,

k[x, y, z]/(y − x2) ∼−→ k[x, z]

via x 7→ x, y 7→ x2, and z 7→ z, with inverse given by x 7→ x, z 7→ z. For the second,
note that, by high school algebra,

V (y + x2,−1− 2x+ y) = V (x+ 1, y − 1),

and
k[x, y, z]/(x+ 1, y − 1) ∼−→ k[z]

via x 7→ −1, y 7→ 1, z 7→ z, with inverse z 7→ z. Thus each of V (y − x2),
V (y+x2,−1−2x+y) = V (x+1, y−1) is irreducible; to check they are the compo-
nents, we just need to see that neither contains the other. Again this is high school
algebra: we find that if the characteristic of k is not two, there are no containments,
whereas if the characteristic is two, the second zero set is redundant, and we have
just one component, the first.

Remark: The isomorphisms used to check that the above ideals are prime could
also been seen geometrically in terms of the zero sets, the first as projecting the
parabola-sheet to a plane, the second as recognizing that V (x + 1, y − 1) is just a
line. See the algebra-geometry correspondence sketched in the next exercise.

5.16. Let k be a field and A 6= 0 a finitely generated k-algebra. Then there
exist elements y1, . . . , yr ∈ A which are algebraically independent over k and such
that A is integral over k[y1, . . . , yr]. Moreover, if k is infinite and x1, . . . , xn is any
set of generators for A, we can choose the yi as linear combinations of the xj . This
has the geometric consequence that if k is algebraically closed and V is a closed
subvariety of kn, then there is a linear map kn → kr which, when restricted to V ,
is [finite-to-one and] surjective.

Proof: The first part was done in lecture, so assume k infinite and let’s prove
the refined statement. Let’s go by induction on n. The case n = 0 being trivial,
assume n ≥ 1. There are two cases:

First suppose that xn is algebraic over k[x1, . . . , xn−1]. Then we have a nonzero
polynomial in n + 1 variables f with f(x1, . . . , xn) = 0. Let F denote its highest
degree homogeneous part of f ; so F 6= 0. Then its dehomogenization with respect to
the last variable is nonzero, hence nonzero as a function since k is infinite; thus there
are λ1, . . . , λn−1 ∈ k such that F (λ1, . . . , λn−1, 1) 6= 0. Let x′i = xi − λixn. Apply
the inductive hypothesis to the x′i and get y1, . . . , yr; these are linear combinations
of the x′i, hence of the xi. I claim that A is integral over k[y1, . . . , yr], which would
mean we’re done. By transitivity of integrality, it suffices to see that A is integral
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over k[x′1, . . . x
′
n−1]; since A = k[x′1, . . . , x

′
n−1][xn], though, it suffices to see that xn

is integral over k[x′1, . . . , x
′
n−1]. And indeed, we have

f(x′1 + λ1xn, x
′
2 + λ2xn, . . . , x

′
n−1 + λn−1xn, xn) = 0,

which, when expanded out as a polynomial in xn, has leading coefficient F (λ1, . . . , λn−1, 1) 6=
0; dividing through by this we have a monic polynomial which does the job.

Now suppose that xn is transcendental over k[x1, . . . , xn−1]. Apply the induc-
tive hypothesis to x1, . . . , xn−1, and add xn to the yj that you get; this works for
x1, . . . , xn.

Now for the geometric interpretation.

Lemma: Let A
φ−→ B be a map of rings, and f : Spec(B) → Spec(A) the map

given by pulling back prime ideals along φ. Then for p ∈ Spec(A), we have a
canonical bijection

Spec(Bp/pBp) ∼−→ f−1({p}) ⊆ Spec(B),

induced by pulling back prime ideals along the natural map B → Bp → Bp/pBp.

Proof: Here by Bp I mean the localization of B at the multiplicative set φ(A\p),
and by pBp I mean φ(p)Bp; this is indeed an ideal, as you should check. Actually,
I’ll leave this whole thing for you to check; you know what the induced map on Spec
is for localizations, and you know what the induced map on Spec is for modding
out by an ideal; it suffices to put these two together.

Corollary: Let A
φ−→ B be a map of rings which is finite, i.e. for which B is

a finite A-module, and f its induced map on Spec. Then im(f) = V (ker(φ)) ⊆
Spec(A). In particular, if φ is injective, f is surjective.

Proof: Recall that Spec of a ring is empty if and only if the ring is zero. Thus
the lemma gives

im(f) = {p | Bp 6= pBp}.
However, Bp is a finite Ap-module, so Nakayama shows that in fact

im(f) = {p | Bp 6= 0}.

But Bp = 0 if and only if 1/1 = 0 in Bp, which means by definition that there is
some s ∈ A \ p such that φ(s) = 0, which is equivalent to saying that p 6⊇ ker(φ),
as desired.

Remark 1: The result holds more generally if φ is just assumed integral; the proof
then just has one tricky step. Recall that finite is the same as integral plus finitely
generated, so for k-algebra maps between coordinate rings of varieties they’re the
same thing.

Remark 2: For a general φ : A → B, the closure of the image of f is always
V (ker(φ)) (nice exercise), so the corollary is equivalent to just saying that the image
of f is closed.
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Remark 3: We can also show that, under the hypotheses of the corollary, the
fibers of f are all finite. This is because Bp/pBp, being a finite dimensional vector
space over the field Ap/pAp, is Artinian, and thus has only finitely many prime
ideals.

Remark 4: Also in this situation, if f(P) = p, then P is maximal if and only
if p is. Indeed, φ induces an integral injection A/p → B/P, from which the claim
follows by a result from class. We’ll probably see a more refined version of this
when we get to dimension theory.

OK, back to the show. Let V be a closed subvariety of kn; letA = k[x1, . . . , xn]/I(V ).
Use the first part of the problem to get linear forms L1, . . . , Lr such that with
yi = Li(x1, . . . , xn) the yi are algebraically independent and A is integral (finite)
over k[y1, . . . , yr]. Define L : kn → kr by L = (L1, . . . , Lr). The claim is that L
restricted to V is surjective, so let p ∈ kr. Let evp : k[y1, . . . , yr] → k denote the
evaluation at p homomorphism, and m its kernel. By the corollary and the fourth
remark, we can extend m to a maximal ideal n of A, which by the Nullstellensatz
is the kernel of evq : k[x1, . . . , xn] → k for some q ∈ V . I claim L(q) = p. Indeed,
it suffices to trace through the yi in

k[y1, . . . , yr]→ A
evq−→ k,

whose composition is evp (it has the same kernel as evp, and then there’s not much
choice, both being k-algebra homomorphisms).

That was ad hoc, but you can conceptualize this kind of argument in terms of an
anti-equivalence of categories between affine varieties over an algebraically closed k
and finitely generated reduced k-algebras.

5.18. Let k be a field, and let B be a finitely generated k-algebra. Suppose that
B is a field. Then B is a finite algebraic extension of k.

Proof: First, a lemma:

Lemma: Let A ⊆ B ⊆ C be rings, with A noetherian, C finitely generated over
A, and C finite over B. Then B is finitely generated over A.

Proof: Suppose C = Bc1 + . . . + Bcm, and C = A[x1, . . . , xm]. Write out the
multiplication law for C over B: cicj =

∑
k bijkck, and write xj =

∑
i b
′
ijci. Con-

sider B′ = A[bijk, b′ij ] ⊆ B. Then C is finite over B′, generated by 1, c1, . . . , cm:
indeed, the set B′+B′c1 + . . .+B′cm is a ring since we threw in the bijk, and then
it contains C since we threw in the b′ij . However, B′ is finitely generated over A, so
by Hilbert’s Basis Theorem it is noetherian; hence C, being finite, is noetherian as a
B′-module, so in particular B ⊆ C is finite over B′, hence finitely generated over A.

Now we do the proof by induction on the number of generators. If this is zero,
the statement is trivial. Otherwise let b1, . . . , bn generate B over k. By the in-
ductive hypothesis, we have that B is finite over k(b1). Then the lemma implies
that k(b1) is finitely generated over k. This implies that b1 is algebraic, though:
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otherwise the function field in one variable k(x) is finitely generated over k, say by
fi(x)/gi(x). But by Euclid’s argument there is an irreducible polynomial p(x) in
k[x] not dividing any gi(x), and 1/p(x) can’t lie in the algebra generated by the
fi/gi. So b1 is algebraic, and k(b1)/k is finite, so by transitivity so is B/k.

6.1(i) Let M be a Noetherian A-module and u : M → M a surjective module
homomorphism. Then u is an isomorphism.

Proof: Forget Noetherian; this is true if M is just finite. (Recall: noetherian
implies finite trivially, but the converse is true only for A noetherian). Indeed, we
can argue as in Cayley-Hamilton. Let m1, . . . ,mn generate M , and write

mi = u(
∑
j

aijmj) =
∑
j

aiju(mj).

Consider the commutative ring A[u] ⊆ EndA(M), and the n×n matrix P over A[u]
whose ijth entry is aiju− 1. Just as in the proof of C-H, we deduce that

det(P ) = 0,

which, when expanded out, shows that we have an equation of the form

anu
n + . . .+ a1u± 1 = 0

(as elements of EndA(M)), which plainly proves that ker(u) = 0 (or plainly fur-
nishes an inverse of u, as a polynomial in u even).

6.1 (ii) If M is Artinian and u is injective, then again u is an isomorphism.

Proof: Consider the chain im(u) ⊇ im(u2) ⊇ . . .; by artinianity, we have
im(un) = im(un+1) for some n. Now let m ∈ M . By the previous equality we
have un(m) = un+1(m′) for some m′, which by injectivity gives m = u(m′), as
desired.

6.5. Let X be a noetherian topological space. Then every subspace of X is
noetherian, and X is quasi-compact.

Proof: Let A ⊆ X. Take a chain U1 ⊆ U2 ⊆ . . . of open subsets of A, so that we
get Vi open in X with Ui = Vi ∩A. Consider the chain

V ′1 ⊆ V ′2 ⊆ . . .

where V ′n = ∪ni=1Vi. This stabilizes since X is noetherian, so we have V ′n = V ′n+k

for some n and all k ≥ 0. Intersecting with A gives ∪ni=1Ui = ∪n+k
i=1 Ui, which says

that Un = Un+k for all k ≥ 0 since we had a chain. So every subset is noetherian.
For the second claim, let {Ui} be an open cover of X. Consider the set of open

subsets which are finite unions of Ui, and take a maximal element by noetherianity.
If this maximal element weren’t the whole of X, it’d miss some point, which would
be in some Ui; we could add this to our union to get a contradiction.

6.6. Prove that the following are equivalent:
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• X is noetherian.

• Every open subspace of X is quasi-compact.

• Every subspace of X is quasi-compact.

Proof: The first implies the third by the previous exercise, and the third triv-
ially implies the second. So it suffices to show the second implies the first. Let
U1 ⊆ U2 ⊆ . . . be a chain of open subsets, and let U be the union. Then the cover
{Ui} has a finite subcover, which shows that the chain stabilizes.

Problem 6.7. Prove that a noetherian space is a finite union of irreducible
closed subspaces, and hence that the set of irreducible components of a noetherian
space is finite.

Proof: Assume the contrary, and take, by noetherianness, a minimal element
A in the set of closed subspaces which are not a finite union of irreducible closed
subspaces (it is unambiguous as to whether we’re saying closed in X or in A). If
A is irreducible, we’re cool. Otherwise we have two proper closed subspaces A′

and A′′ with A′ ∪ A′′ = A; by minimality each of A′ and A′′ is a finite union of
irreducible closed subspaces; thus so is A. This is a contradiction.

First we have to say what is meant by the set of “irreducible components”;
let’s say an irreducible component is a maximal irreducible closed subspace. I
claim that if X is written as a union ∪iXi of irreducible closed subspaces, then
each irreducible component is among the Xi. Indeed, a direct translation of the
definition of irreducible shows that if Y and Z are closed with A ⊆ Y ∪Z, we have
A ⊆ Y or A ⊆ Z. Applying this to our situation, we see that A ⊆ Xi for some i,
which by maximality means A = Xi.

The same argument, by the way, shows that if no Xi contains another (which can
always be arranged by throwing some out), then the Xi are exactly the irreducible
components.

6.8(a) Prove that if A is a noetherian ring, X = Spec(A) is a noetherian space.

Proof: Indeed, by stuff we know, there’s an inclusion-reversing correspondence
between closed subsets of X and radical ideals of A. The ACC for radical ideals is
weaker than for all ideals.

6.8(b) Give a non-noetherian A for which Spec(A) is noetherian.

Example: Geometrically, we want a point with arbitrarily bad nilpotents. Let’s
take

A = k[x1, x2, x3 . . .]/m2,

where m = (x1, x2, . . .). I claim Spec(A) has just one point, m. Indeed, this is
maximal:

k[x1, x2, . . .]/m
∼−→ k

via xi 7→ 0 for all i. But also, m clearly lies inside the nilradical of A, which lies
inside all primes. The only way this can work is if it’s the only prime.



6

However, we have (x1) ⊆ (x1, x2) ⊆ (x1, x2, x3) ⊆ . . ., which doesn’t stabilize
(it’s pretty easy to understand operations in A: just forget all terms of degree > 1).

6.9. Deduce from Exercise 8 that the set of minimal primes in a noetherian ring
is finite.

Proof: By 6.7 and 6.8, the set of irreducible components of X is finite. But
maximal irreducible closed subspaces of X correspond to minimal prime ideals of
A:

Indeed, recall that the operations I 7→ V (I) and S 7→ ∩p∈Sp give inclusion-
reversing bijections between the set of radical ideals of A and the set of closed
subsets of X. So all we need to check is that primality corresponds to irreducibility.
But recall that the closed subset V (I) is homeomorphic to Spec(A/I), and that by
an exercise on the first problem set this is irreducible if and only if the nilradical
of A/I is prime, i.e. if and only r(I) = I is prime.


